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A Theoretical Study of Light Beams Guided Along

Tapered Lendike Media, and Their Applications

SHINNOSUKE SAWA, MEMBER, IEEE

Absfract-Propagation behavior of light beams along the tapered

lenslike media, in which both the focusing parameter and the on-

azis permittivity have gradients in me axial direction, is investigated

in detail, theoretically and numerically, with the help of the approxi-

mate wave theory. As a result, it is clarified that the tapered lenslike

media can be classified into two kinds, according to the Werences

of the focusing property. Matched incidence conditions to eliminate

the fluctuations of the light beam are also clarified. As an application

of the theory, a spot-size transducer and a mode transducer for use

in a circular bend of the light focusing waveguide are proposed, and

the design conditions are derived. A ray-oscillation suppressor (ROS)

is also proposed, and its applicability to some new opticaf circuit

components is discussed.
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I. INTRODUCTION

OPTICAL waveguides such as parabolic-index fibers

termed SELI?OC [1] are technologically important

because of the applicability to optical communication,

optical instruments, and optical date processing. As is

well known, waveguides of this type consist of a lens-

Iike medium whose permittivity decreases quadratically

with distance in the transverse direction from the guide

axis.

The lenslike medium with a permittivity profile varying

not only in the transverse direction but also in the direction

of the guide axis may be termed a (‘tapered lenslike

medium,” The tapered lenslike medium is expected to

have various interesting applications to optical circuit

components, since it has a light-focusing property varying

slowly and continuously along the axial direc{,ion.
Several papers have already been reported on the

tapered lenslike media [2]–[6]. For example, Tien et al.
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[2] have already analyzed khepropagation behatiorof
a Gaussian beam along lenslike media of various forms by

the viewpoint of ray theory, and have derived the basic

equations for the spot size and the curvature of the phase

front of the light beam as well as the trajectory of the beam

center in the tapered lenslike media. In the previous

papers [2]–[6]~ however, some interesting and important

focusing properties of the tapered lenslike media have not

yet been clarified satisfactorily.

In the present paper we deal with the tapered Ienslike

media from the wave theory point of view, unlike the

viewpoint of ray theory as in the previous papers [2]–[6].

We consider a tapered lenslike medium in which both the

on-axis permittivity and the focusing parameter determin-

ing the rate of change of the permittivity in the transverse

direction have gradients in the axial direction.

General expressions for the response of the electro-

magnetic fields in the tapered medium with a taper of

arbitrary shape are derived, with the help of an approxi-

mate wave theory previously described [7]–[9]. The

results are applied to the cases of various tapers. For con-

venience, the tapered Ienslike media are classified into

two kinds. One is a “tapered lenslike medium of the first

kind,” and the other is a “tapered lenslike medium of the

second kind.” As a typical example of the first kind of

tapered lenslike medium, we consider the simplified case

in which the focusing parameter has a gradient in the axial

direction, while the on-axis permittivity is constant. For

this case, the linearly, exponentially, and raised-cosine-

wise tapered media are studied. As for the second kind of

tapered lenslike medium, we take the simplest case in

which the on-axis permittivity has a gradient varying

exponentially in the axial direction, whereas the focusing

parameter is constant.

Propagation behavior of light beams for these cases is

investigated in detail theoretically and numerically. As a

result, it is clarified that the two kinds of tapered media

possess different focusing properties. For example, the

second kind of tapered lenslike medium possesses the

following two interesting characteristics which are not

found in the simplified case of the first kind of tapered

medium where the on-axis permittivit y is assumed to be

constant. 1) The light beam exhibits three types of re-

sponses—oscillatory, nonoscillatory, and critically damped

responses—according to the differences of the axial gradient

given to the focusing parameter and the on-axis permit-

tivity. 2) The undulations of the beam trajectory and its

slope, as well as the fluctuation of the spot size of the light

beam, decrease (or increase) in amplitude with increasing

propagation distance. Further, matched incidence condi-

tions to eliminate the fluctuation of the spot size as well

as the undulation of the beam trajectory are derived. As

an application of the theory, a spot-size transducer and a

mode transducer for use in a circular bend of the light

focusing waveguide are proposed, which are composed of

the first kind of tapered medium with a raised-cosine

taper, and the design conditions for both transducers are

clarified. As a further application, a ray-oscillation sup-

pressor (ROS) using the second kind of tapered medium

is proposed, and its applicability to some new optical

circuit components is considered.

For simplicity, the analysis in the present paper is

limited to a two-dimensional model, and it is based on the

Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) method

[10] and a paraxial beam approximation.

II. BASIC EQUATION AND ITS SOLUTIONS

A. Straight Section

We consider a straight section of the tapered Ienslike

medium as shown in Fig. 1(a) and assume the permittivity

profile to be

e(x,z) = E(0) G2(z) {1 — g2(z)z2} (1)

where e(0) G2(z) represents the on-axis permittivit y of the

medium along z = O and g(z) is the focusing parameter.

Both G(z) and g (.z) are assumed to be the functions of z

alone, varying very slowly in the axial z direction. In the

following, it is assumed that the permittivity c(z,z) varies

so slowly in both the x and z directions that its variations

over a distance of a free-space wavelength XO of a light

wave can be neglected.

Electromagnetic fields of a light wave propagating along

such media are derived approximately from the scalar

wave equation [7]

~2J7

~ + ~ + k’(0) G2(z){l – g2(.z)x2)V = O (2)

x - 91z)(r-R)’)

o

‘R)

o’

(a) (b)

Fig. 1. Straight and circularly bent sections of the tapered lenslike
medium. (a) Straight section in which permittivity C(Z,Z)is given
by (l). (b) Circularly bent section in which permittivity ~ (r,z) is
given by (16).
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where

/c(o) = 0J[H6(0)]112 (3)

and K is the permeability of the medium, and sinusoidal

time dependence with angular frequency a is assumed.

Since we are interested in the waves propagating

primarily in the axial z direction, in other words, the almost

79

Following the convenient method of anal~,is devised so

far [7]–[9] (see the Appendix), we can d%errnine the

field distribution function U (z,z) from (5). Aj; a result, the

primary parameters which govern the propagation be-

havior of the light beam, i.e., the wavefront coefficient

1/S2 (z), the trajectory of the beam center 8(z), and its

slope #(z) are derived as follows:

1 h(z) Alp, – x,(o) p2(z) – jK(o)AY2(o) {P1(0)P2(Z) – Pz(o)m(z) }

As’’(z)— = F@) “pl(o)b(z) – p,(o)h(z) – jK-’(o) s-’(o) {X1(0 )A2(2) – X’(o) xi(z) ]

6(2!) =
{P2(o)~l(z) – Pl(o)~2(z) lb(o) – { ~2(o)~l(z) – ~l(o)~2(z) }~’(o)

[h(z) ]“’{h(o)p,(o) – h?(o) pi(o) }

*,(Z) = _ {P2(o)Pl(~) – Pl(o)P2(~) l~(o) + {k2(o)pl(z) – k(o)p2(z) ]8’(0)

[h(z) ]“2{A,(0)P2(0) – b(o) pi(o) )

plane waves, let us write with

pi(z) . E@ Xi(z) – xi’(z),
ZK(Z)

We assume that the field distribution function [1 (x,z) K(z) G(z)
varies so slowly with z that its second derivative with h(z) = — —

K(0) = G(0) “
respect to z is negligibly small. Substituting (4) in (2)

and neglecting the second derivative dzU ( X,Z) /&~, we

obtain the paraxial wave equation

CPU
ax’
— –j2K(.z) ; – {K’(z) + K2(z)g2(z)z2}U = O (5)

with

K(z) = ?c(0) G(z) (6)

where the prime indicates the differentiation with respect

to 2.

In order to clarify the behavior of the light beam propa-

gating along the medium whose permittivity varies

parabolically in the transverse plane as given by (1), it is

essential to analyze the propagation behavior of Hermite–

Gaussian beams. Thus let us consider an Hermite–Gaussian

beam having input wavefront coefficient’ 1/S2 (0) as well

as the input slope #(0) and the input displacement 8(0)

of the beam center from the center axis of the medium (the

optic axis) z = O, at the entrance of the tapered medium
2=():

[
U(Z,O) = exp –

{x – 6(0)]2

2s’ (o)
– jK(0)6’(0) x

1

“Hen[xx)]‘7)
1The wavefront coefficient used in this paper is defined as

1/s’(2) = I/w’(z) + j K(z)/R(z)

where w(z) and R(z) represent, respectively, the spot size and the

radius of phase front curvature of a Gaussian beam. This coefficient

can also be related to the well-known complex beam parameter

1/$7(.2) [11] as 1/s2(2) = jK(z)/q(z).

(8)

(9)

(10)

‘i:= 1,2 (11)

(12)

In the foregoing equations (8)-(11), the functions A1(z)

and ~’(z) represent the two independent solutions of

d’h (Z)
~ + [92(Z) – a’(z) – U2(Z)]L(Z) = o (13)

where

G’(z) da(z)
a(z) = —

2G(z)
u’(z) = —

dz “
(14)

The spot size w(z) of the Gaussian beam can be obtained

from the real part of 1/S’(z) given by (8), as

w(z) = l/[Re{l/S2(z) ]]112. (15)

B. Cimularly Bent Section

Next we consider the case where the center axis of the

tapered Ienslike medium is curved in a circular bend with

the radius of curvature R, as shown in Fig. 1(b). Let the

permittivity profile for this case be

:(T,z) == :( R) G2(z) {1 — gz(z) (r — ]?)2} (16)

and let the radius of curvature R be lar~e enough to

satisfy the inequality

lr– R)<<R. (17)

Under the same assumptions as in the case of the straight

section, we can derive the expression for the distribution

function of the electromagnetic fields. The re:ult yields the

primary parameters, i.e., the wavefront coefficient 1/~2 (z),

the trajectory of the beam center ~(z), and its slope

3’(z) as
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h(z) X,(o)@,(z) –11(0)?72(Z) –jR(o)s2(o) {Pl(o)P2(~) –?32(0)P1 (’)1

m“pl(o)\2(z) – 172(o) Ii(z) –j~-’(o)~-z(o){~l(o)~z(z) –w)~l(~)}

(18)

{?%(0) XI(Z) – 151(~) J2(z) }~(o) – {X2(0)L(Z) – kl(o)x2(z) I {~’(o) – h’(o)) + ~c(z)
(19)

[h(z) ]’12{1i(0)I%(0) – 12(0) Pi(O) }

W2(OM(2) – i(ojp2(4 )8(0) + {X2(0) Pi(Z) – L(o)172(z) I w(o) – M(o)) + ~:(z)— (20)

~h(z) ]’/2{h(o)132(o) – X2(0) Pi(O) }

p(z) .g?l 1,(.2) –x,’(z), i=l,2 (21)
2K(.z)

1
8,(2) =

/

z X,( T?)X2(Z) –X1(2)X2(V) ~q (22)

RIR(z)]l/2 ~ xl(q) x2’(q) –xl’(v)~2(n)

6.’(2) =+8.(2) (23)

where

~(z) = ~(0)G(z) i(0) = U[PZ(R)]112. (24)

In the preceding equations (18)–(22), xl(z) and X2(Z)

are the two independent solutions of

d’~(z)
~+ [@2(z) ‘u’(z) –a2(Z)]X(Z) =0 (25)

where

‘(z)=’(z@*T ‘2’)
The spot size @(z) of the Gaussian beam can be derived

from (18) as

ti(z) = l/[Re { l/~2(z) }]1’2. (27)

dent. The other is the second kind, in which G(z) and g(z)

have a fixed relation.

A. Tapered Lenslike Medium of the First Kind

For this kind of tapered lenslike medium, the coefficient

of the second term of the left-hand side of (13), g2(z) –

a’(z) – u2(z), is in general a function of z. Therefore, (13)

can be represented as

‘~ + T2(z)h (z) = O (28)

with
T(z) = [g’(z) – u’(z) – 02(2) ]1/2. (29)

As mentioned in the preceding, we have assumed that

G(z) and g(z) are slowly varying functions of z, so that

the function T(z) defined by (29) can also be considered

to be a slowly varying function of z. Thus let us further

assume

1 I d2T(z) << ~

T’(z) \ dz’ “
(30)

Then we can solve (28) by the use of WKBJ approxima-

tion [10]. Adopting the solutions thus obtained as the

two independent solutions kl(~) and X2(z), we can express

the field distribution function U(z,z) for the straight

section as

[
U(Z,Z) = exp –

{x – 5(2)}2

2s2(2)
- jK(z)#(z)z +j{K(z)6(z) #(z) - K(0)6(O)&(O) } ]

(
. ~c’

)

nlz
— sin goeCos g,e + ‘u(o)sin’08+.7 82(0)

. .pl@ (z) h-1/’ (z)

(

2

)

(7k+l)/2

cos goO + u(0) sin goO —j —
870)

sin goO

. Hem

[

{x – a(z)} [p(z) ]l@/f.s’(o)

(
1

(31)
1/2

{cosgoO + u(0) sing00)2 + * sin2 goO
)

III. PROPAGATION BEHAVIOR OF LIGHT where He. (x) refers to the Hermite polynomial of the
BEAMS ALONG TAPERED nth order defined by (A2) in the Appendix. The param-

LENSLIKE MEDIA eters used in (31) are given in Table I. In a similar fashion,

we can get the field distribution function for the circularly
For convenience, let the tapered lenslike media be bent section by replacing l/S’2(z), ~(z), ~(z), P(z), u(.z),

classified into the following two kinds. One is the first kind 0, K(z), go, and WCin (31) with l/S2(z), 6(z), $’(z), F(z),

of tapered lenslike medium, in which the parameters u(z), ~, ~(z), @o,and ti~, which are also listed in Table I
G(z) and g(z) governing the shape of taper are indepen- except for ~ (z) given by (24).
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TABLE I

PRIMARY PARAMETERS GOVERNING THE PROPAGATION BEHAVIOR OF LIGHT BEAMS ALONG THE TAPERED LENSLIKW
MEDIUM OF THE FIRST KIND

St raight Section Circularly Bent Section
-—

co~~. II(Z) sin~ij’

Sfo)
-j~ [(

l+ti(0)iI(Z)}sin~j

+ ( ti(z)-ti(o)}cos~~
1,

COSIJ + U(O) sin~~ – j * sin~O&
s (o)

cosgO@-lJ(Z)singO@

Sto)
-i~ [

1 +U(0) U(Z)) sinqo

I
1

+ { u(z) -u(o)] Cosg#Wave Front

Coefficient 1 . ?(z)

E?(Z) s’(o)

%(z)= f“*(z)
[{ $(0) cOS~F+ti(0)sinZjO~

}

$’(0) -$:(0)

}]+(~’’”’.~ “c(z)
[

} ${0) 1$(Z). ~%$(o){cosgj+u(o)sin~g +~sin~e
Trajectory of

the Beam Center

$’(z)= -~~[$(0)[{l+U(O)U(Z)] si”q~

]{

J’(o)
+ [ u(z)–u(o)}C.OSRQ+ ~ U(Z) sing-cw3@

1)

slope of

the Beam

Trajectory

H1w(z) . T l+u’(o) +~’+[1-u’(o)-~ I]c%o

1+ 2U(0) sin2g.O + fU(0)(l -c0S2QQ)Spot Size

z(z) = ‘Y(z) /Y(o) ,
.

h(Z). G(Z)/ G(0) , ;8 . T(O) z

1

(

U’(Z) + h’(Z)
ri(z). ———

Zqti(z) ?7(z) h (Z) }
, ?(Z) = ;(Z) h(Z) ,

{
/“”

“-’4 z 4.JLf (z) SJ190 (3(2)-(X )}dT
& F(Z)= ~(q)d~ , ~.= 1 G Y &c(Z). ~

o ~0 5(T)

?)(Z) = T(Z)/T(0) , h(Z)= G(Z)/G(0) ,

1

{

IJ’(z) +~
u(z) = — —

z~’g (z) ‘-u(z) h (Z) 1
, f(z)=

~

z
@. V(~)d~ , w,= 1/-

.

go=T(0) ,

Z)(Z) h(Z)

Parameters

Used in the

E xmessions

Note: The parameters G(z) and g(z) are independent.

As a typical example, let us consider the simplified case

that G(z) = constant and g(z) is a function of z. In this

case, u(z) of (14) becomes zero and hence (29) is simplified

to T(z) = g(z). Such a tapered medium may be termed

a “prototype of tapered lenslike medium of the first

kind.” Let us restrict our attention to this prototype and

investigate the propagation behavior of light beams in

detail, according to the following examples.

1) Linear Taper: We consider the simplest model of

this kind of medium, a linear taper, which is defined by

the functions

[[ {

1 1
# (2) = (az + 1) 112

: }a 1 – (az+ 1)2 ‘0s900

{

a2

–g” 1+
4g02(az + 1)2 }1

-sin goO 6(01)

{

a sin goO
+ Cos goo –

2go(az + 1)2}1
6’ (o) (34)

w(o)

[{

WC4

:1+
‘(z) = (az + 1) ’/2 2 I ~(o) 1’

G(z) = 1 g(z) = g“(az + 1) (32)

(
WC4

l–
I ~(o) 1’)

cos 29.0 + ~ sin 29.0where a is a constant, and g“ > 0.
The field distribution function U(x,z) for the input

beam of (7) is obtained by substituting into (31) ,0(z) -

w. in (I) of Table II for the straight section and D(z) N W.

in (I) of the same table for the circularly bent section,

together with the expressions given in Table I. As a

result, the trajectory of the beam center 8(z), its slope

#(z), and the spot size of the Gaussian beam w(z) are

expressed for the straight section as

+

+

+

az ( 1 -- cos 2gOf3)

}{
+

a ( 1 — cos 2g00)

4go’ 2go

‘in2@’}”lm{%i}r(35)

and $(z) and ti (z) for the circularly bent sectj on as

1

[{ I

6’ (o)

6(Z) = (az + 1) ’/2
cos goO+ & sin goO 8(0) + — sin goO

go 1
(33)
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TABLE II where

Slwe 01

lap,,

(1)

Linear

Taper

PARAMETERS FOR DETERMININCI THE RESPONSE OF TRE

ELECTROMAGNETIC FIELDSOF THE LIGHT BEAM GUIDED

ALONGTHE TAPERED LENSLIKE MEDIUM OFTEE FIRST
7 =W(90R). (38)

(11)

iai Taper

(m)

%k?d-
Cosine

Taper

KIND WITH JJNEAR, J4XPONENTIAL, AND lLAlSED-
COSINE TAPERS

Straight Section Circularly Bent Section

?(z) az+l ~(z) J(a2. t)2-r JT7

-a(l+a)bsinbz -.
l(z) u(z) - a(l, a)b( 1 + acosbz)sinbz

2q(l+acc5@ 2g. [(l+acosbz~-(1 +aYr2]~

z+~sinbz

~ +[(.+~sinbzfil +.)

e (1+Q)T2 Sin-! (~sinbz ~

I+a 2b~ l+acosbz 1

Note: It is assumed that 2 ]u(z) ] <<1 and 2 l;(z)] <<1.

3(2’)= ((.LL)[(””)-iacos’~
+{2,.(1”-72)(’(0’-a

( 2a++a’(o)+— )} 1
sin ~og

ij02R

1—7”
+

@,’R{ (a.z + 1)’2– 72]

W(o)(l — 72)114

[{
:1+ “tit~(z) ‘~(az+l)’–7qu4 2

I ~(”) 1’

(
+ 1– ‘$

)

a sin 2~J

I ~(”) 1’
co’ 2QOZ +

go ( 1 — 72) 3/2

+
.}{

a2( 1 — cos 2JOF) + a ( 1 ‘— co’ 2~oti)

4g/(1 – -#)s 2go(l – ‘yz)sfz:’

. ‘sin2’J}”lm{&}r

(36)

(37)

If the input wavefront coefficient 1/S2 (0) is equal to

l/,w.2, the spot size in the straight section becomes,

from (35),

{‘(z)= (az fl)’/2 1+ .i&sin2g0e

+ & (1 – ‘0s 2g,e)
}

1/2

. (39)

It is seen from (39) that for the case where the medium is

not tapered (a = O) the spot size keeps a constant value

for the input beam with S(0) = WC,while for the case of

the tapered medium (a # O) it fluctuates due to the

terms sin 2g00 and cos 2g00. In order to eliminate the

fluctuation, it is sufficient to choose the input wavefront

coefficient as

1 1 a

W(o) ‘w~–~m”

In this case we have the spot size as

(40)

w(z) = wC/(az + 1)112 (41)

which does not fluctuate anymore, decreasing (for a > O)

or increasing (for a < O) monotonically.

Similarly, if we choose the input wavefront coefficient as

1 _ (1 – 7)1/2 .a(l — ~2)112

s’(o) – W2 ‘] 2gl)wc2
(42)

we get the corresponding spot size for the circularly bent

section as

ti(z) = wJ[(az + 1)2 — -y2]l/4. (43)

Fig. 2(a) illustrates the calculated spot size in the

straight section w(z) normalized by the input value w(0)

as a function of the normalized distance z/a–l. The param-

eter a/2g0 and the input wavefront coefficient 1/S2 (0) are

taken as a/2g0 = 0.05 and 1/S2 (0) = l/4w~, l/w.2, and

4/w~. Fig. 2 (b) shows the calculated trajectory of the

beam center in the straight section normalized by the

input value 8(0), as a function of z/a–1, for the param-

eters a/2go = 0.05 and & (0) = O. It can be seen from

these figures that the light beam propagates with fluctu-

ations in both the spot size and the beam trajectory, de-

creasing the amplitudes and periods of the undulations.

It can also be seen that if the input displacement of the

beam center and its slope are zero (i.e., ~(0) = #(0) = O)

and the input wave front coefficient 1/S’2 (0) is given by

(40), the fluctuations are completely removed.

Fig. 3 illustrates the calculated trajectory of the beam

center in the circularly bent section. In this figure the

parameters are chosen to be a/2jo = 0.05, joR 08(0) =

0.6, and @OR#(0) = 0.12. The beam trajectory in the

circular bend undulates with decreasing amplitude and

period, and asymptotically approaches the center axis of
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then the beam trajectory becomes

“1 ;(z)= 1–72

Ooz{(cw + 1)2 – 72]R “
(45)

In this case the beam trajectory no longer undulates.
Zs
YF Moreover, if the input wavefront coeilicimt is selected

Ow
as that given by (42), the spot size doe:~ not fluctuate

WN~~ either.

4+
~~

2) Exponential Taper: Let us investigate e the behavior

0U3
z

of light beams along an exponential taper in which the

functions defining the shape of taper are given by

G(z) = 1 g(z) = go exp [az] (46)

NORMALIZED D] STANCE ~., — where a is a constant, and go > 0.

(a) The field distribution function U(z,z) for the input

beam given by (7) can be obtained by substituting into

1

(31 ) p(2) = WCin (II) of Table II for the stiaight section

and ~(z) x ti. in (II) of that tAble for the circularly bent

section. Further, the trajectory of the beam center and

the spot size can be derived by substituting p(z) = WC
a=
mm

or ~ (z) x W, in (11.) of the same table into the correspond-

@~

ing expressions given in Table ~,

Fiwm the results we see ‘that the light be:irn propagates
v+
:6

with undulating beam trajectory and fluctuating spot size,
~v decreasing (a > O) or increasing (a < O) Ihe amplitudes
‘z
n~ and periods of the undulations or fluctuations. The
~m undulations or fluctuations can be removed under the

28 same conditions as in the ease of the linear taper. If
Izoz

d(0)” = 8’(0) = O and’ (40) holds, the beam trajectory

and the spot size in the straight section are expressed as

6(2) = o

(b)

Fig. 2. Calculated spot sizes and trajectory of beam center of the
light beam in the straight section of the first kind of tapered lenslike
medium with i linear taper.

t 1,2+

“1,
MMMALIZED DISTANCE %-I —

- oh

Fig, 3. Calculated trajectory of beam center ,of the light beam in
the circularly bent section of the first kind of tapered lenslike
medium with a hnear taper.

the medium (r = R). Particularly, if we choose the input

displacement of the beam center and its slope to be

(44)

w(z) = we exp [–a,z/2] (47)

and if (42) and (44J are satisfied, they become in the

circular bend

1–’Y2
3(Z) =

j02 { exp [2az] – Y2}R

ti(z) = wc/ {exp [2az] — -f2}114. (48)

3) Raised-Cosine Taper: Let us consider the case where

G(z) = 1 and the function g(z) is ~iven by a raised-cosine

function in the form

g(z) = * (1 + acosbz) (49)

where go, a, and b are constants, and it is assumed that

O<lal<landb>O.

The field distribution function U (z,z) for the input

beam of (7) is derived by substituting into (31) p(z) = toC

or ~(z) N tiC in (III) of Table II for the straight or cir-

cularly bent sections, correspondingly. It can be seen
from these results that the beam trajectory and the spot

size undulate in the raised-cosined tapered medium as

well. The input conditions to remove the undulations of

the light beam are given for the straight section as

1 1—.6(()) = 6’(0) = o -cj@j- = W<z (50)
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and for the circularly bent section as

a(o) = I/@,’l? 6’(0) =0

1/s2(0) = (1 – @)l/2/wc2. (51)

The beam trajectory and the spot size corresponding to

theifiputc onditionsof (50) and (51) are, forthestrai,ght

section,

8(Z) =0

w(z) = W.(1 + a)l/2/(1 + acosbz)l/2 (52)

and for the circularly bent section

ti(z) = (l+a)2/{tio2R(l +acosbz)2}

w(.z) = wc/[(i + a cos bz)Z/(1 + a)z — TZ]l/A. (53)

‘It must be noted that the input wavefront coeilicients

to eliminate the fluctuation of spot size are complex values

as given by (40) and (42) for the linear and exponential

tapers, whereas for the raised-cosine taper they are real

values as given by (50) and (51).

B. Tapered Lenslike Medium of the Second Ktkd

Next we consider the case that G(z) and g(z) are

related by

gz(z) – a’ (z) – u’(z) = I“ ( = constant). (54)

In this case, (13) can be solved exactly and has the

oscillatory, nonoscillatory, and critically damped solu-

tions corresponding to 1’2>0, I“ <0, an; 1’2 = O. As a

result, ,the wavefront coefficient 1/S2 (z), the trajectory

of the beam center 8(z)’ and its slope # (z), and the spot

size of the Gaussian beam w(z) are calculated for the

straight section, as shown in Table III.

The functions G(z) and g(z), which satisfy the relation

of (54), cannot be determined uniquely. As an example,

let us consider the simplest case where g (z) = g ( = a posi-

tive constant) and G(z) = exp [2az] (a = a positive

constant). Then we have for the’ straight segtion

r2 = 92 _ ~2. (55)

Thus, in this case, we obtain oscillatory, nonoscillatory,

and critically damped responses of the light beam, res-

pectively, according to g’ > a’, g’ < CY2,and g’ = a’.

Figs. 4 and 5 show the calculated trajectories of the beam

center 3(z) and their slopes # (,z) normalized by the input
value 6(0), and the calculated spot sizes w(z) normalized

by the input spot size w (0), as a function of the normalized

distance i/ I’O-’. The material constant a/g and the input

conditions of the light beam 8(0), 6’(0), and w(0) used

for the numerical calculations are given in these figures.

From Figs. 4 and 5, it is seen that for the case of g > a

the light beam exhibits oscillatory responses; and the un-

dulating beam trajectory and its slope, as well as the spot

size, decrease in amplitude with increasing the propaga-

tion distance z. On the other hand, for the case of g ~ a

the oscillatory responses disappear and the light beam

shows uniformly focusing response in the propagation

‘direction. Especially for the critical case of g = a, the

most remarkable focusing effect is obtained, i.e., the light

beam is focused onto the transmission axis with the shortest

distance from z = O.

We can explain the preceding three kinds of response of

the light beam qualitatively as follows.

For convenience, let us define two domains D% and D,,

as shown in Table IV, according to the differences of the

permittivity distribution in the x and z directions. That

is to say, D. is the domain in which the distribution of the

permittivity is such that the rate of decrease in the x

direction is greater than the rate of increase in the z direc-

tion, while domain D. is such that the rate of increase in

the z direction is greater than the rate of decrease in the

z direction. In Table IV, P (xP,zP) and Q (z~,z~) are any

two given points in the respective domains, and c(P) and

c(Q) represent the permittivities of” the points P and Q,

respectively. Further, .V(P) and v(Q) denote the propaga-

tion velocities of the light wave at the respective points.

First, let us consider the oscillatory case of g > a (the

general case where I’z > O). In this case we can consider

that the previously defined domains D. and D. have such

a distribution as shown in Fig. 6(a), i.e., the domain D.

occupies a great part of the medium and the domain D,

is limited to the z axis and” its vicinity. In the domain D.

the permittivity is large near the z axis, and hence the

propagation velocity of the light beam wili be faster away

from the 2 axis. As a result, the light beam as a whole will

be bent along the path C, -+ Cz a C, + . . . . as shown in

Fig. 7(a), and thus propagate in undulating fashion. When

the light beam passes through the domain Dz, in which

the permittivity takes gieater values for large values of z,

the propagation velocity of the light beam wiil become

slower in the side away from the x axis. Consequently, the

light beam will be pulled toward the z axis as it crosses the

z axis in the upper or lower right-hand direction. Thus the

undulating trajectory of the light beam will decrease in

amplitude with increase of propagation distance.

Next we consider the nonoscillatory and the critical

cases where g < a (the general cases 1’2 < O). For these

cases the distribution of the domains Dc and D, is illus-

trated as in Fig., 6(b). Thus in the domain D. the propaga-

tion velocity of the light beam will be faster in the side

away from the z axis and will be slower in the side near

the axis. As a result, the light beam as a whole will be bent

along the path Cl + C2 -+ Ca * . . . and enter the domain

D, as shown in Fig. 7(b). Then, as stated before, in the
domain D. the propagation velocity of the light beam is

slower in the side away from the x axis, the light beam as

a whole will be bent along the path CA+ C5 + C6 -+ “ : “,

and asymptotically approach the z axis without undula-

tion. In this case the speed of asymptotic approach of the

light beam to the z axis depends on the values of the per-

mittivities e(Pi) and t (Qi).. Therefore with a certain

permittivit y distribution the trajectory of the light beam

will approach the z axis most rapidly, i.e., the optimum

focusing effect will be obtained. Accordingly, the critical

case of g = a (the general case of 1’2 = O) can be con-

sidered to represent such an optimum response.

In the preceding we have explained qualitatively only
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1,
TABLE III

PRIMARY PARAMETERS GOVERNING THE PROPAGATION BEHAVIOR OF LIGHT BEAMS ALONG THE TAPERED LENSLIKE
MEDIUM OF TEE SECOND KIND

r

1 h(Z)
1

cos~-u(z) Sfnpz- 1*~l+U(0)Lk(Z]sinpZ +[lb(z)-UI(0)] cayz
—-_ .
s?(z) 29(O) cos~Z + U,(o) sin~Z - j &

s(o) PSin Z

( I ) oscillatory

Case

r’> o

(~) Non-Oscillator

Case

r’< o

(III) Criticai

Case

1-”= fJ

q(z) =
[

~ 72) $(O) ( cOs~Z + 111(0) sin
F)+ $Q ‘inp

1

[
&’(z) .- h!z) $(o)p[{ l+ U(0)U(Z)} sinpZ +{ul(zi ;Mo)}cospz)

U
+6’(0){ lit(z) Sinfz --p} j

w(z)= +l+lh)+ qy (“ 4+ l-d(o) -*4]ms2pZ
)

{ Fl”!&i7&..:l$f’+ U(0)(l-cos2/3Z) + sin 2

{here
-/ -

p =J9’(Z) - dz) - d(z) , Wj=~]V, h(Z)= ~ , ~(z) . _@-
2/3h(z)

s?(o)
1 h (Z)

cosh~z - U’(Z) sinh3Z+j ~
[{

1
1- U2(0)U#j ] sinh~Z- {W(Z) - lJ@)}coshtZ

2—.— .
s;(z) ml 2

cosh~z + U2(0) sin h~Z - j _%_ sin h~z

. Slo)

vhere

F= J@2@+f(z)-92(z) # w,= Hm # h(z)= % ‘Jz) = &

{
S’f”) U3(0)Lb(z)g(o)z + U,(z) - u,(o)]

1 h(Z) 1 -U.JZ) 9(0)2 - j ~

~= -m” 1 +U, (0)g(O)Z– j*)9(0)Z

[
$JZ) = Nz) f(o)+{ I&(o)g(o)+g 1]9(o)z

[

/

)z(z) = - 9(o)V(z) UJz) f U,(o)$(o) + ~)9(o)z + S(0) {U3(Z)- %(0)] - ~

[
W3(Z) = 1 + 2U3(0)9(0)Z + { u$o)+l~~) 92(0)Z2+ 29(0)Z { 1+ U3(0)9(0)Z]

o $k[*)]’’~(&. ‘e(_#&]]’A

ffk re

g(z) = J- , w,= ~-,h~z~= ~~ ‘(z)= 2;$1,)

85

Note: The parameters G(z) and g(z) have a tlxed relation as gz(z) – u’(z) – U2(Z) = rz = constant.

the variation of the trajectory of the beam center. Similar

qualitative explanation is possible for the variation of the

spot sizes as shown in Fig. 5.

C. Comparison of the Two Kinds of Tapered Lensldce

Media

From (33) –(35) obtained for the linearly tapered lens-

Iike medium, we see that for the positive values of the

taper constant (a > O) the undulating amplitude of the

spot size w(z) and the trajectory of the beam center ti (z)

decrease with increasing the transmission distance z, while

the slope of the beam trajectory #(z) increa~es. Although

these results are obtained for the restricted case in which
the permittivity profile is given by e(z,z) = c(0){ 1-

gi$(az + 1)2$2}, examination of the expressions for w(z),
ti (z), and &(z) given in Table I shows that similar results

will be obtained for more general cases in which only the

focusing parameter g(z) has a gradient in the axial direc-

tion. That is to say, in the prototype of the first kind of

tapered lenslike medium, the undulation of the slope of
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Fig. 4. Calculated trajectories and S1OPSSof beam center of the
light beam guided along the second kind of tapered lenelike medium
whose permittivity is given by c (z,z) = e (0) exp [2az] (1 – gz~).
ro represents & T, and g in accordance with az < gz, az > gz, and
a2 = gz, respectively ~6(0) # O, 6’(L3) = O). (a) Beam trajectories.
(b) Slope of beam trajectories. (It is assumed that a >0 and
g > o.)

the beam trajectory #(z) increases in amplitude if the

functional form of the taper for the focusing parameter

g(z) is selected such that the undulations of the beam

trajectory 6(z) and the spot size w(z) decrease in am-

plitude.

On the other hand, in the second kind of tapered lens-

like medium, we see from the expressions given in (I) of

Table III that the undulating amplitudes of #(z), as

well as ~(z) and w(z), can be reduced regardless of the

incidence conditions if the functional forms of the tapers

for the permittivity profile and focusing parameter, G(z)

and g(z), are selected such that they satisfy the relation

of (54) and G(z) is an increasing function of z.

Further, the second kind of tapered Ienslike medium

possesses the following other interesting properties which

are not found in the prototype of the first kind of tapered

lenslike medium. The light beam exhibits three types

of responses—oscillatory, nonoscillatory, and critically

I
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Fig. 5. Calculated spot sizes of the light beam guided along the
second kind of tapered lenslike medium whose permittivity is
given by 6(z,z) = 6(0) exp [2 czz] (1 – g2z2). (a) Oscillatory case
(a’ < g’). (b) Nonoscillatory csse (cd > g’). (c) Critically damped
case (d = gz). (It is assumed that a > 0 and g > O.)
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TABLE IV

Two DOMAINS D. AND Dz CLASSIFIED BY THE DIFFERENCE
OF PERMITWIWITY DISTRIBUTION IN THE z AND z DIRECTIONS

--+

Coordinates of

Points P and Q
Permittivitks Propagation

Domain ~wRofNATE~RMwE at Points P Velocity at

x z and Q Points P,Q

I]XP,-+X4Iarbitrary I E(P)> ‘Z(Q) lb(P)] <IV(Q)I

IXPI=IAJI Zp s ZQ &(P) s &(Q) [V(Pj2+(Q)[

Iarbitraryl Zi=> Zo I E(P) > &(Q) IIv(wI< IV(Q)I

Ixd<jX~ z,= z, &(P) k &(Cl) P@)ls21V(Q)l

damped

x

‘k
Dx

o- -. ‘-kRi&&

Dx

(a) (b)

Fig. 6. Illustrative diagram (I) for explaining qualitatively (a)
oscillatory and (b) nonoscillatory and critically damped responses
of the light beam.

x
( IWT)14V(Q,)I;E(?)> gq )

Dx
*-.-

(a)

(b)

Fig, 7. Illustrative diagram (II) for explaining qualitatively oscillatory, nonoscillatory, and critically damped re-
sponses of the light beam. (a) Oscillatory case (cP < gt: rl > O). (b) Nonoscillatory and critically damped cases
(~’ 2 g’: r’ < o).

responses—according to the differences of the r “z 1
axial gradient given to the focusing parameter and the 1/0 U(Z) dz]G(z) = KO exp 2 (56)
on-axis permittivit y. Especially if we select g(z) and G(z)

as with

G’ (Z) >0 (57)

g(z) = [uZ(z) + u’(z) ]1/2 by setting the arbitrary constant 1’ of (54) as zero, we
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can completely remove the “undulations of the light beam
and obtain the optimum focusing effect. In the foregoing

expression (56), u(z) is an arbitrary continuous function

of z and Ko is a constant independent of z.

IV. MATCHED WA~EFRONT COEFFICIENTS

In the preceding section the input wavefront coefficients

to eliminate the fluctuations of spot sizes in the straight

and circularly bent sections have been derived for both

the linear and ‘exponential tapers as (40) and (42), and

for the raised-cosine taper as (50) and (51). Generally,

the corresponding input wavefront coefficients for the

first kind of tapered lenslike media can also be derived

from the expressions for l/A’2 (z) and 1/~2 (z) given in

Table I. The results are expressed as

1
—=-&{ l-j U(o)}
S2(0)

1
—= +1 –’j’zZ(o)}.
)9(0) ’23/

(58)

(59)

For the input wavefront coefficients of (58) and (59),

the spot sizes w(z) ,ti (z) and the wavefront coefficients

1/S2 (z) ,1/ L!?2(Z) are simplified from the expressions in

Table I, respectively, to

w(z) = wJ[P(z) ]112 (60)

1
—=g{l–ju(z)}
s’(z)

(61)

and
a(z) = ?3./[2(2) 11’2 (62)

1 _ ?(2)
—{1–jtt(z)}.

s’(z) –, ti~
(63)

From (60) –(63) ye see that ~he fluctuation terms cos gd3

and sin gd? (COS&# and sin J#) disappear, and hence the

fluctuations of the spot sizes in the tapered media are

completely eliminated. In this sense we call (58) and (59)

the matched input wavefront coefficients, and also (61)

and (63 ) the matched wavefront coefficients for the first

kind of tapered Ienslike media. Similarly, for the second

kind of tapered Ienslike media in the oscillatory case

( I“ > O), the matched input wavefroht coefficient, the

matched wavefront coefficient, and the corresponding spot

size are obtained from (58), (60), and (61 ) by replacing

w., u(O), u(z), and p(z) with w1, u1(0), M(z), and h(z) of

(I) in Table III for the straight section and with ti,, u,(O),

U1(z), and h(z) for the circularly bent section, in which

@ and %(z) are given in the following:

ml = l/[i%(0) G(0) ]112

h’ (Z)
‘?21(2)= —

2flh (Z)
(64)

with

B = [~’(.z) – u’(Z) – CT’(z) ]’/2. (65)

Application of (61) and (63) to the cases ‘of the linear,

exponential, and raised-cosine tapers yields” the matched

wavefront coefficients as shown in Table V. Fig. 8(a)

and (b) shows numerical illustrations of the matched

wavefront coefficients in. the straight sections for the

various tapered Ienslike media of the first kind. From the

figure we can easily find the matched wavefront coef-

ficients at the entrance (z = O) and exit (z = 1) planes

of the tapered lenslike medium. Especially, we should note

that the imaginary part of the matched wavefront co-

efficient for the exponential taper is constant regardless of

the length of the tapered medium 1; the shape of phase

TABLE V

MATCHED WAVEFRONT COEFFICIENTS IN THE STRAIGHT AND
CIRCULARLY BENT SECTIONS OF THE TAPERED LBNSLIKE

MEDIUM OF THE FIRST KIND WITH LINEAR, EXPONENTIAL,
.4ND RAISED-COSINE TAPERS

StmP.?ot”Tapcr Straight Section I Circularly Sent Sect ion

Linear Taper

II

a7+ 1
—-j a

Gin., .(.Z + 1)
@ 2qw:(az. 1) @ 2qW2[(CIZ, 1)2. J2J

Exponent ial
~az

&_j .ezaz_Ll_-

Taper
~-’ 2 SW: w: 2g~(e2”E r2 )

Rais@d-
1 +acosbz J(1+acosbzf-[( I+a)r]’

Cosine
@(l+a) W2(1 .a)

absinbz
.

Taper *I
ab(l .acosbz)sinbz

2g~w~( 1,+ amsbz) ‘ J 2ga@((l .acosbzY-(l+a)z r?

I 3

H

inwginwy
I-------- -- ------ 0.05 —

‘\\ !
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~ .$
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Fig. 8. Numerical illustrations of the matched wavefront coeffi-
cients in the, straight section of the fist kind of tapered lenslike
medium (a) for linear and exponential tapers and (b) for raieed-
cosine taper.
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front is conserved against variations of 1. Conversely, if

we determine the shape of taper in which the imaginary

part of thernatched wavefront coefficient Im{l/S2(z)} =

– p’ (z) /2gOw,zP(z) is independent of z, we find that it is

nothing but the exponential taper. Thus we see that the

exponential taper possesses an interesting property of con-

serving the shape of phase front of the light beam with the

matched input wavefront coefficient against variations of

the length of the tapered medium.

V. APPLICATIONS OF TAPERED

LENSLIKE MEDIA

A. Spot-Size Transducer

Suppose that two straight Ienslike media with different

focusing parameters must be connected. If the two media

are connected directly, mode conversion and reconversion

occur since the normal modes of the media are different,

and, as a result, the spot size of the light beam with input

conditions matched to the entrance medium fluctuates in

the outgoing medium. If the fluctuation grows remarkably,

the diffraction loss due to the finite aperture of the

medium increases and also signal distortion arises, dete-

riorating communication quality. In order to avoid such

unfavorable phenomena, we need a matching mechanism

between the two media. Certain matching can be done by

using the natural focusing properties of multimode sections

such as a combination of two or more lenses. In such a

mechanism, however, reflection loss due to the abrupt

change of the permittivity at the boundaries of the

matching lenses would be inevitable, and slight displace-

ment or misadjustment of the lenses would cause ap-

preciable mismatching so that efficient and stable coupling

could not always be obtained. In this section we propose

a new matching mechanism as shown in Fig. 9, a spot-size

transducer composed of a tapered lenslike medium of the

first kind, which permits stable and efficient coupling

of the two media, and we derive the design conditions for

highly efficient coupling.

In order to avoid the fluctuation of the spot size arising

from mode conversion and’ reconversion, we must make

both the wavefront coefficients 1/S2 (0) at z = O and

1/S2 (1) at z = 1 equal to the characteristic wavefront

coefficients l/w,12 and 1/w,z2 of the media I and II, res-

pectively. That is, we need the following relations:

1/s2 (o) = l/wc12

t,(x)=&(o) [1- qx’]

\ t(:,z)=t(o)[l - g’(z)x’)

-me’”m-u?=i-”e’”m-
Fig. 9. Spot-size transducer utilizing the first kind of tapered

lenslike medium.

l/lS2(z) = l/wc#. (66)

Let the permittivity of the media I and II be expressed

as

cl(z) = 6(0)(1 — gl’z’)

62(Z) = e(o)(1 — g’%’). (67)

Then we have

I/w.,’ = glk (o)

l/w.2’ = gzk(o) . (68)

Noticing that both l/w.12 and l/w,z2 are real values, let

us apply the relations of (66) to (61), and we get

u(o) = u(z) = o (69)

82 (0) = w.? = p (1) WJ. (70)

Among the three types of tapered lenslike media inves-

tigated in the preceding section, it is only the raised-cosine

taper that can satisfy (69) with a finite Iengt h of taper i.

Set the constant b of (49) as b = n-/l; then (69) is satis-

fied. Therefore, the following design considerations of the

spot-size transducer are limited to the case of using the

raised-cosine taper.

The wavefront coefficient of the light beam satisfying

the input conditions of (50) is given from Table V as

1 l+czcosbz
——---+.7’

ab sin b.z

82(2) = w.’(l + a)
— . (71)

2gOwj ( 1 + a cos bz)

Substituting (66) and (68) into (71 ) and setting b =

rll, we can determine a and go as

~ = (91 – 92)./(91 + 92) , (72)

go, = gl. (73)

Substitution of (66), (72), and (73) in (71) yields the

spot size in the transducer as

‘(z)‘W4H1+(3’+(1-3CC’S7
(74)

Moreover, the transfer ratio of the spot sixe W.JWC1 is

calculated from (70) by setting b = r/1 and z = 1 of p(z)

of (III) in Table II as

lOCZ/Wcl= {(1 + a)/(1 – a) )112. (75)

Fig. 10(a) illustrates the relationship between wC2/wCl

and a givefi by (75). From this figure we can readily find

the approximate value of W,JWC1 as a function of the

parameter a involved in (49) ; for example, if we set

a = — 0.6, we have WJWGI = 0..5, and hence for this case

the light beam at the exit of the transducer z = 1 has the

spot size reduced by half of the input value,, Fig. 10(b)

displays the normalized spot sizes in the tl’ansducer of

(74) for the transfer ratios wC2/wCl = 0.8, 0.5, and 0.2, as

a function of the normalized distance z/1.
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Fig. 10. (a) Transfer ratio of spot size and (b) its varjationsin a
spotisize transducer, utdlzing the first kind of tapered lenslike
medium with a raised-cosine taper.

B. Mode Transducer for U.seina Circular Bertd

Let us suppose that the straight section of an optical

fiber consisting of alenslike medium must beconneeted

tothecircularly bentsectionofthat fiberwithoutoffsetting

and tilting the center axis of the medium. If we connect

the two sections directly, the light beam propagating

along the circular bend is accompanied tvith the undula-

tions of the beam trajectory and the fluctuations of the

spot size because of the difference of normal modes in

each section. These undulations and fluctuations are also

unfavorable from the transmissioti system point of view.

Such unfavorable phenomena, however, can be suppressed

by inserting a mode transducer between the straight and

e~cularly bent sections, as showti in Fig. 11. The portion

OA in the figuie represents the mode transducer, which is

effective in converting normal modes of the straight sec-

tion into those of the circularly bent section.

Let the cuived lenslike med~um yith a raised-cosine

taper be inserted in the portion OA as the mode transducer.

The trajectory of the light beam incident on the circular

4bend O along its axis ctin be obtained by substituting

~(.z) w ~0 of (III) in Table II into the expression for

~(z) given in Table I and setting 6(0) = ti’ (0) = O as

i(z) = – {J(2) cm Ooti – J’(z) }/(oo’R) (76)

with

‘(z)=(%iy”[(’+lRb”ki%4-

(77)

The parameters ]0 and ; are given in (III) of Table II.

If we take the length of the tapered medium 1 as

1 = m/b = m/jo = ~/{go[l – 2/(goR) ‘]’/’) (78)

we get from (76)

3(1) = {J’(l) + J(l) ]/(~o’R) (79)

%(1) = :3(2) = o. (80)
1=0

straight sect ion

mode transducer

r

02

Fig. 11. Mode transducer for use in a circularly bent section of an
optical waveguide consisting of lenslike medium.

Accordingly, the condition to eliminate the undulation

from the trajectory of the beam center is given as

l/@;’R = {.J(l] + J’(l)] /(@o’li) (81)

with

~c = 9s[1 – 2/(gsR.)Y (82)

where the perrnitt~vity profiles are assumed to be for the

straight section SO

e,(z) = :(0) (1 — g,%z) (83)

and for the circularly bent section A-B

%(?-) = %(R.)[1 — gca(r — Rc)q. (84)

The matching conditions for the characteristic. spot

sizes at the entrance and exit of the mode transducer are

derived from (53) and (78) as follows:

Wc{l – 2/(goR)2]–l/4 = ‘13Ci(= l/[g8k(o)]l/2] (85)

‘.{(sY-&}-’’’=tic”(ck(0)lk2),l’’2‘8’)
From (78), (81), (85) j and (86), we can determine the
parameters go, a, b, and R, which are involved in the ex-

pression for the permittivity profile of the mode trans-

ducer
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Z(Y,LZ) = Z(R){l — go2(l + acos&)2(r — R)2/(1 + a)z}.

(87)

If we assume CC(R.) = es(0) and g, = g., we obtain the

following results:

R = RC{l + (1 – 2/g,2R3)3/4}

@= ’s(’+iH’
.=---[l+(l(&YIYl

b=+-ia’ (88)

The results of (88) represent the design conditions for the

mode transducer consisting of a raised-cosine tapered

medium.

C. Ray-Oscillation Suppressor

As described in the preceding section, the second kind

of tapered lenslike medium possesses an interesting prop-

erty: the undulating amplitudes of the slope of the beam

trajectory 6’ (z), as well as the be~m trajectory 6(z) and

the spot size w(z), can be reduced if the functional forms

of the tapers G(z) and g (z) are chosen such that (54) is

satisfied and G(~) is an increasing function of z.

This property of the second kind of tapered lenslike

medium makes it possible to construct an ROS with only

a passive medium. According to [12], however, the realiza-

tion of an ROS with only a passive medium is limited to

the case of transmitting a light beam from a region of low

to one of high permittivity, which is proved by Liouville’s

theorem. Accordingly, if we insert such an ROS in the

connecting terminals of two light-focusing fibers consisting

of Ienslike media with different permittivity on the center

axis, we can suppress the undulation of the light beam

propagating from the fiber of low to one of high per-

rnittivit y.

Further, if such an ROS is installed in the photo-

receiving terminal plane of a photodetector such as an

avalanche photodiode or a photomultiplier, it acts as a

component not only to enlarge the light-receiving area but

also to increase the light-acceptance angle.

VI. CONCLUSION

In the present paper we have derived general expressions

for the response of the electromagnetic fields, in the

tapered lenslike medium on the basis of the approximate

wave theory, which were not obtained in the- previous

papers based on the ray theory. Applying the results to

the various tapers, we have investigated the propagation

behavior “of light beams in detail, theoretically and

numerically. As a result, we have clarified that tapered

lenslike media can be classified into the first and second

kinds, according to the differences of the focusing prop-

erty. We have also clarified the matching incidence con-

ditions to eliminate the fluctuations of the iight beam,

which have not yet been obtained in the previous papers.

As an application of the theory, a spot-siz,? transducer

and a mode transducer for use in a circular bend have

been proposed, which are composed of the first kind of

tapered lenslike medium with a raised-cosine taper, and

the design conditions for both transducers have been

derived. Further, an RfM using the second kind of tapered

Ienslike medium has been proposed, and its applicability to

some new optical circuit components has been discussed.

We have verified that the basic equations fQr the beam

trajectory, the spot size, and the curvature of the phase

front obtained in the present paper coincide with those

derived from the viewpoint of ray theory, apart from slight

differences due to t~e assumptions -introduced for sim-

plification. For the sake of simplicity, we ‘have assumed

that the permittivity profile in the transverse cross section

is proportional to the square of the distance from the

center axis, and also that the material of the medium has

no loss and no gain. Furthermore: we have used the TEM

wave approximation as well as the paraxial beam approxi-

mation. Accordingly, we cannot apply the results of this

paper to cases where these approximations are not appli-

cable or sa$isfied.

APPENDIX ~

SOLUTION OF THE PARAXIA L

WAVE EQUATION (5)

In order to clarify the behavior of the light beam with

Hermite-Gaussian transverse field distribution, let us

express the field distribution function as [7]–[9]

17(x,z) = exp [A (,z)z2 + 13(z)z + C(z)]

-He. [D(z)x + l’(z)] (Al)

where A (z), B (z), C(z), D (z), and F(z) are unknown

parameters which are assumed to be functions of z, and

He. (x) denotes the Hermite polynomial of the nth order,

defined as

with
/

I
n

i’ n = 2,4,6,. . .

[1nz=
(A3)

n—1

2’
n= 1,3,5, . . . .

Substituting (Al ) in (5) in the text and eliminating

the terms He.–z (x) by using the recurrence ~elation

2(n – 1) He.-2(x) = 2X He.-l(x) – He.(x) (A4)

we obtain

{&(z)z2 + A2(z)x + A3(z)).Hen[D(z)x + E’(z)]

+ {A,(z)z + As(z) ) “HeJD(z)x + ~(z)~l = o (A5)

where Ai(z) (i = 1,2,. . . ,5) represents functions of z, in-

cluding A (z), B(z),. o. ,F(z) and their first derivatives
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with respect to z. To determine the unknown parameters

A(Z),B(Z),... ,F(z), let us express (A5) as a descending

power series in x with the help of (A2) and compare terms

with equal powers of x. Then we get the following set of

differential equations:

dA (Z)
j2K(z) --&-- = 4A’(z) – g2(z)K2(z)

dB (Z)
j2K(z) ~ = 4A (z)B(z)

(A6a)

(A6b)

dC(z)
j2K(z) -&- = B’(z) + 2A (Z) – 2rz~2(z) – j~’(Z)

(A6C)

dD (Z)
jK(z) y = D(z) {2A(z) + D’(z)} (A6d)

Next, to integrate (A6d), substitute (A7) in (A6d),

and we have

-T+[Z%%ID(Z)‘[-MD’(Z)‘A”)
dD (Z)

Equation (A14) is a Bernoulli’s differential equation and

can be integrated as

[
D(z) = ~,.$2(Z) + j2$2(z) ~ ~(z;2(zJ”2 (A15)

where K1 is an integration constant.

Furthermore, integrating (A6c) and (A6e) and sub-

stituting for A (z), B(z), and D(z) from (A7), (48), and

(A15), we obtain

K(z)
C(z) = A(z)62(z) +jv~(s) ~’(z) – nln D(z)

dF(z)
jK(z) ~ = D(z) {B(z) + F(z) D(.z) }. (A6e)

—

As a first step, to integrate (A6a) and

w@e

K(z) 1 di(z)
A(z) = –j———

2 ~(z) dz

(A6b), let us

(A7)

da(z)
B(z) = –2A(z)8(z) – jK(.z) ~ (A8)

in which t(z) and 6(z) are newly introduced unknown

parameters, being real-valued functions of k

Substituting (A7) and (A8) in (A6a) and (A6b), we

have

d’i(z) + ~’(Z) d$(z)

dz’
— + g’(z) f(z) = o

K(z) dz
(A9)

d’s(z) + K’(z) d6(z)

da
— + g’(z’)a(z) = o.

K(z) d.z
(A1O)

If we express &(z) and 8(z) as

$(z) = M(z) /[K(z) ]1/2 8(z) = N(z) /[K(z) ]’12 (All)

and substitute into (A9) and (A1O), we find that both the

newly introduced functions M(z) and N(z) must satisfy

the same differential equation as given by (13) in the

text. Let the two independent solutions of (13) be XI(z)

and k’(z). Then we get from (All)

1
g(z) =

[K(z)]’12
{cm(z) + a’x’(z) } (A12)

a(z) = &,,2 {b,h,(z) + b,x?,(z) } (A13)

where al, a2, bl, and b2 denote integration constants to be

determined from the input conditions of the light beam.

Consequently, we find the functional forms of A (z)

and B(z) by substituting &(z) and 6(z) from (A12) and

(A13) into ‘(A7) and (A8).

,4

(n+ %) In i(z) – ~ In K(z) + K’ (A16)

F(z) = D(z) {K3f(z) – 6(Z)] (A17)

where KZ and K3 are also integration constants.

If we consider an input beam with the field distribution

function U(X,O) as given by (7) in the text and determine

the integr~tion constants al, a’, bl, b’, Kl, Kz, and K’, we

can uniquely determine the unknown parameters A (z),

B(z),..., F(z), and hence from (Al ) the field distribution

function U(z,z). As a result, the primary parameters

governing the propagation behavior of the light beam, the

wavefront coefficient 1/S2 (z), the trajectory of the beam

center 6(z), and its slope 6’(z) are obtained as (8), (9),

and (10) in the text, respectively. From the definition of

the wtivefront coefficient, the spot size w(z) and the ‘

curvature of the phase front l/R(z) of a Gaussian beam

are calculated ‘as

w(z) = l/[Re { l/13’2(z) } ]112

l/R(z) = Im {1/S2(z) }/K(z). (A18)

It is interesting to observe that the differential equa-

tions for w(z) and l/R (z) as well as the beam trajectory

6(z) conform with those derived from the viewpoint of ray
theory. To der@e the equations for w(z) and l/R(z),

let the unknown parameter A (z) be expressed as

A(z) = ‘~{1/W2(Z) +jK(z)\R(z) }. (A19)

By substituting (A19) into (A6a) and equating the real

and imaginary parts, respectively, we have

{

K(z) K’(z) K(z) R’(z)
— _
R(z) R’(z) }

1 K’(z)
= — – — – g2(z)K2(z) (A20)

WA(Z) R’(z)

1 1 dw(~)

R(z)w2(z) ‘m dz “
(A21)
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From (A21) we get

1 1 dw(z)—= ——
R(z) W (z) dz “

(A22)

Substituting (A22) into (A20), we obtain the equation

for the spot size as

d’w(z) + I?(z) dw(z)
‘— + g’(z)w(z) –

1

dzz
.

G(z) dz Kyz) W3(Z)
o.

(A23)

Differentiating (A22) yields

d

{ ,}

1

{}

– 1 d’w(z) + W’(Z) 2
_— ——

z R(z) = —
(A24)

W(Z) dzz w(z) “

From (A23) we get

1 d2w(z)

{}

G’(z) W’(Z) 1—— ___ _
w (z) dzz G(z) W(Z)

– 92(Z) + ~2(z)w4(z) “

(A25)

Substituting (A25) into (A24) with (A22), we have the

equation for the curvature of the phase front as

d

{}

–1 1

{–}

–1 2
— = ge(z) –

~ R(z) K2(z)w4(z) + R(z)

G’(z)

{}

1_— __ . (A26), G(z) R (Z)

The equation for the beam trajectory 6(z) is given by

(A1O).
We can easily verify that (A23), (A26), and (A1O)

agree with the results by the viewpoint of ray theory.

For example, following Tien et aL’s paper [2], let us sub-

stitute the refractive index corresponding to the permit-

tivity (1) in the text, n(z,z) = nOG(z) { 1 – (g2(z)/2)z2)

into the ray equation (3) of [2] and approximate

1 an – gz(z)x.— . + –gz(z)z (A27)
n 8X 1 – gz(z) x2/2 :

93

1 tht G’ (Z) g(z)g’(z)d
.— .— .

G(z)
“ ‘w (A28)

n 82 1 – ge(z) #/2 = G(z)

with the assumption that

g’(z) 2+/2 <<1

g(z)g’(z) ~z~< G’(z)

1- g’(z) x’/2 G(z) “
(A29)

Then we obtain (A1O), from which (A23) and (A26) are

readily derived, according to [2].
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