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A Theoretical Study of Light Beams Guided Along
Tapered Lenslike Media, and Their Applications

SHINNOSUKE SAWA, MEMBER, IEEE

Abstract—Propagation behavior of light beams along the tapered
lenslike media, in which both the focusing parameter and the on-
axis permittivity have gradients in the axial direction, is investigated
in detail, theoretically and numerically, with the help of the approxi~
mate wave theory. As a result, it is clarified that the tapered lenslike
media can be classified into two kinds, according to the differences
of the focusing property. Matched incidence conditions to eliminate
the fluctuations of the light beam are also clarified. As an application
of the theory, a spot-size transducer and a mode transducer for use
in a circular bend of the light focusing waveguide are proposed, and
the design conditions are derived. A ray-oscillation suppressor (ROS)
is also proposed, and its applicability to some new optical circuit
components is discussed.

Manuscript received April 7, 1975; revised August 7, 1975. This
work was supported by the Science Research Fund of the Ministry
of Education. Numerical calculations were done on FACOM 230-60
at the Data Processing Center, Kyoto University, and NEAC 2200-
700-500 at the Computer Center, Osaka University.

The author is with the Department of Electronics, Faculty of
Engineering, Ehime University, Matsuyama City, 790 Japan.

I. INTRODUCTION

PTICAL waveguides such as parabolic-index fibers
termed seLFoc [1] are technologically important
because of the applicability to optical communication,
optical instruments, and optical date processing. As is
well known, waveguides of this type consist of a lens-
like medium whose permittivity decreases guadratically
with distance in the transverse direction from the guide
axis. ‘
The lenslike medium with a permittivity profile varying
not only in the transverse direction but also in the direction
of the guide axis may be termed a ‘‘taperved lenslike
medium.”” The tapered lenslike medium is expected to
have various interesting applications to optical circuit
components, since it has a light-focusing property varying
slowly and continuously along the axial direction.
Several papers have already been reported on the
tapered lenslike media [2]-[6]. For example, Tien et al.
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[2] have already analyzed the propagation behavior of
a Gaussian beam along lenslike media of various forms by
the viewpoint of ray theory, and have derived the basic
equations for the spot size and the curvature of the phase
front of the light beam as well as the trajectory of the beam
center in the tapered lenslike media. In the previous
papers [2]-[6], however, some interesting and important
focusing properties of the tapered lenslike media have not
yet been clarified satisfactorily.

In the present paper we deal with the tapered lenslike
media from the wave theory point of view, unlike the
viewpoint of ray theory as in the previous papers [2]-[6].
We consider a tapered lenslike medium in which both the
on-axis permittivity and the focusing parameter determin-
ing the rate of change of the permittivity in the transverse
direction have gradients in the axial direction.

General expressions for the response of the electro-
magnetic fields in the tapered medium with a taper of
arbitrary shape are derived, with the help of an approxi-
mate wave theory previously described [7]-[9]. The
results are applied to the cases of various tapers. For con-
venience, the tapered lenslike media are classified into
two kinds. One is a “tapered lenslike medium of the first
kind,” and the other is a ‘“‘tapered lenslike medium of the
second kind.” As a typical example of the first kind of
tapered lenslike medium, we consider the simplified case
in which the focusing parameter has a gradient in the axial
direction, while the on-axis permittivity is constant. For
this case, the linearly, exponentially, and raised-cosine-

wise tapered media are studied. As for the second kind of

tapered lenslike medium, we take the simplest case in
which the on-axis permittivity has a gradient varying
exponentially in the axial direction, whereas the focusing
parameter is constant.

Propagation behavior of light beams for these cases is
investigated in detail theoretically and numerically. As a
result, it is clarified that the two kinds of tapered media
possess different focusing properties. For example, the

. second kind of tapered lenslike medium possesses the
following two interesting characteristics which are not
found in the simplified case of the first kind of tapered
medium where the on-axis permittivity is assumed to be
constant. 1) The light beam exhibits three types of re-
sponses—oscillatory, nonoscillatory, and critically damped

Fig. 1.
medium. (a) Straight section in which permittivity e(z,z) is given
by (1). (b) Circularly bent section in which permittivity & (r,2) is
given by (16).

responses—according to the differences of the axial gradient
given to the focusing parameter and the on-axis permit-
tivity. 2) The undulations of the beam trajectory and its
slope, as well as the fluctuation of the spot size of the light
beam, decrease (or increase) in amplitude with increasing
propagation distance. Further, matched incidence condi-
tions to eliminate the fluctuation of the spot size as well
as the undulation of the beam trajectory are derived. As
an appliction of the theory, a spot-size transducer and a
mode transducer for use in a circular bend of the light
focusing waveguide are proposed, which are composed of
the first kind of tapered medium with a raised-cosine
taper, and the design conditions for both transducers are
clarified. As a further application, a ray-oscillation sup-
pressor (ROS) using the second kind of tapered medium
is proposed, and its applicability to some new optical
circuit components is considered.

For simplicity, the analysis in the present paper is
limited to a two-dimensional model, and it is based on the
Wentzel-Kramers-Brillouin—Jeffreys (WKBJ) method
[107] and a paraxial beam approximation.

II. BASIC EQUATION AND ITS SOLUTIONS
A. Straight Section

We consider a straight section of the tapered lenslike
medium as shown in Fig. 1(a) and assume the permittivity
profile to be

e(z,2) = €(0)G(2) {1 — g*(2)2*} (1)

where €(0) G*(z) represents the on-axis permittivity of the
medium along z = 0 and g(2) is the focusing parameter.
Both G(z) and ¢(2) are assumed to be the functions of z
alone, varying very slowly in the axial z direction. In the
following, it is assumed that the permittivity ¢(z,2) varies
80 slowly in both the z and z directions that its variations
over a distance of a free-space wavelength Ao of a light
wave can be neglected.

Electromagnetic fields of a light wave propagating along
such media are derived approximately from the scalar
wave equation [7] .

v
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Straight and circularly bent sections of the tapered lenslike
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where

(0) = w[ue(0) 2 3)

and p is the permeability of the medium, and sinusoidal

time dependence with angular frequency o is assumed.
Since we are interested in the waves propagating

primarily in the axial z direction, in other words, the almost

79

Following the convenient method of analysis devised so
far [7]-[9] (see the Appendix), we can dstermine the
field distribution function U(z,z) from (5). As a result, the
primary parameters which govern the propagation be-
havior of the light beam, i.e., the wavefront coefficient
1/8%(z), the trajectory of the beam center 6(z), and its
slope &' (2) are derived as follows:

1 ke M0)piz) = M(0)pa(z) — FK(0)S*(0) {(pr(0)pa(2) — p(0)pa(2) } )

82(2)  82(0) pi(0)n:(2) — p2(0)Ai(2) — FK7(0)S72(0) {A:(0)X2(2) — Na(0)Na(2) }
5(z) = {P2(0)21(2) — p1(0)X2(2)}8(0) — {A2(0)Ni(2) — AMi(0)A2(2) }8°(0) (9)

[ (2) J72{M(0) p2(0) — A2(0)p1(0) }
() = — tp2(0)pi(2) — p1(0)pa(2)}5(0) + {Ma(0)ps(2) — M(0)p2(2)}8'(0) (10)
[A(2) J72{A(0)p2(0) — A2(0)p1(0)}
plane waves, let us write with
V = U(x,z) exp [—jk(O) /G(z) dz] . (4) pi(2) = _,I;E ; Ni(2) — N/ (2), 2 =12 (11)
We assume that the field distribution function U(z,2) K(z) G

varies so slowly with 2z that its second derivative with h(z) = ROREIOR (12)

respect to z is negligibly small. Substituting (4) in (2)
and neglecting the second derivative 62U (x,2)/d2%, we
obtain the paraxial wave equation

22U

- ”‘J2K(Z) — — {K'(2) + K*(2)¢*(2)2*}

™ U=0 (5

with
K(z) = k(0)G(2) (6)

where the prime indicates the differentiation with respect
to z.

In order to clarify the behavior of the light beam propa-
gatmg along the medium whose permittivity varies
parabolically in the transverse plane as given by (1), it is
essential to analyze the propagation behavior of Hermite-
Gaussian beams. Thus let us consider an Hermite—Gaussian
beam having input wavefront coefficient® 1/82(0) as well
as the input slope §'(0) and the input displacement §(0)
of the beam center from the center axis of the medium (the
optic axis) z = 0, at the entrance of the tapered medium
z = 0:

U(z,0) = exp [— {QC;S—S((OO))}E — jK(O)a’(O)x]
[z —8(0)
-He, [—S(O) ] (7)

1 The wavefront coefficient used in this paper is defined as
1/8%z) = 1/wz) + j K(2)/R(2)

where w(2) and R(2) represent, respectively, the spot, size and the
radius of phase front curvature of a Gaussian beam. This coefficient
can also be related to the well-known complex beam parameter
1/9(2) [11] a5 1/8%(z) = JK(z)/q(z)

In the foregoing equations (8)—(11), the fg‘nctibns M(2)
and A\:(2) represent the two independent solutions of

B 4 6 — o) — 2@ R =0 (1)
where
IO %@
0 = 5y o) = (14)

The spot size w(z) of the Gaussian beam can be obtained
from the real part of 1/82(2) given by (8), as

= 1/[Re{1/8*(2) } '~

B. Circularly Bent Section

w(z) (15)

Next we consider the case where the center axis of the
tapered lenslike medium is curved in & circular bend with
the radius of curvature R, as shown in Fig. [(b). Let the
permittivity profile for this case be

é(re) = eR)G*(2) {1 — ¢*(2) (r — R)?}

and let the radius of curvature K be large enough to
satisfy the inequality

(16)

|7 — R|<KR. (17)

Under the same assumptions as in the case of the straight
section, we can derive the expression for the distribution
function of the electromagnetic fields. The result yields the
primary parameters, i.e., the wavefront coefficient 1/ S2(2),
the trajectory of the beam center 8(z), and its slope
¥ (2) as
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1 h(z2)  %(0)p1(2) — M(0)Pa(2) — K (0)8%(0) {pl(o)pz(z) — p2(0)p1(2) } (18)
gz(z) 82(0) 71(0)Ka(2) — F2(0)Xa(2) — JE1(0)S2(0) {Ka(0)Ra(2) — % (0)Ka(2) }
x o {P(0)M(2) — 71(0)%(2) }18(0) — {Ra(0)%a(2) — Ra(0)Ke() }{6(0) — 8./(0)}
= () PP RO A(0) — }0)7:(0)] o (9
< {Pz(O)pl(Z) — 71(0)72(2)}6(0) + {Xa(0)P1(2) — Ka(0)Pa(2) }{8'(0) — 8/(0)} | 6’ 2
Ye = () T 3a(0) 2(0) — M(0)7(0)]} R
with dent. The other is the second kind, in which G(z) and ¢(z)
7 ( ) have a fixed relation.
P .
pi(e) = gy M) — NG, i=12 @Dy rapered Lenslike Medium of the First Kind |
. . For this kind of tapered lenslike medium, the coefficient
5,(2) = 1 * Jmk(z) = ME)ho(n) dn (22) of the second term of the left-hand side of (13), ¢2(2) —
’ R[K ()12 Jy MmN (1) — N (n)Re(n) o'(2) — ¢%(2), is in general a function of . Therefore (13)
p can be represented as
8/ (2) = d—zéc(z) (23) d)\(z) L PN = 0 (28)
where with
K(z) = k(0)G(2) k(0) = wlue(R)T (24) T(z) = [g*(2) — o'(2) — o*(2) I (29)

In the preceding' equations (18)—(22), Ai(2) and Xe(z)
are the two independent solutions of

a2 )\(z)

+ [3*(2) — o' (2) — *(2) R(2) =0

1/2
9 (z)R2> )

The spot size @ (z) of the Gaussian beam can be derived
from (18) as

@(2) = 1/[Re {1/8:(2)} .

(25)

where

§(z) = g(2) ( (26)

(27)

fz @)}

U(xe) = exp[— 28 (2)

(cos gof + 4 (0) sin gf + j == kD

(0)

As mentioned in the preceding, we have assumed that
G(2) and g(z) are slowly varying functions of z, so that
the function 7'(z) defined by (29) can also be considered
to be a slowly varying funetion of z. Thus let us further
assume

1 {d?T(2)

T (2)| de?
Then we can solve (28) by the use of WKBJ approxime—
tion [107]. Adopting the solutions thus obtained as the
two independent solutions A;(2) and A,(2), we can express

the field distribution function U(z, z) for the straight
section as

< 1. (30)

— JK(2)¥ (2)z + j{K(2)5(2) ' (2) — K(0)5(0)5'(0)}]

nf2
sin goo)

(cos gb + u(0) sin gob — 7 ——— <

(0)

.p1/4(z) .h-—l/z(z)
(n-+1)/2
sin g00>

{z — 8(2)}[p(») 1V2/8(0)

-He,

" <{cos~ g8 + u(0) sin gof}2 +

III. PROPAGATION BEHAVIOR OF LIGHT
BEAMS ALONG TAPERED
LENSLIKE MEDIA

For convenience, let the tapered lenslike media be
classified into the following two kinds. One is the first kind
of tapered lenslike medium, in which the parameters
G(2) and g(z) governing the shape of taper are indepen-

(31)

We 4 1/2
540) sin? goa)

where He,(x) refers to the Hermite polynomial of the
nth order defined by (A2) in the Appendix. The param-
eters used in (81) are given in Table I. In a similar fashion,.
we can get the field distribution function for the circularly
bent section by replacing 1/8%(2), 6(2) & (2), p(z), u(z),

A K(z) g0, and w, in (31) with 1/8%(2), 3(2), 8'(2), 3(2),

a(z), 8, K (2), §o, and @., which are also listed in Table 1
except for K (z) given by (24).
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TABLE I

PriMARY PARAMETERS GoVERNING THE PROPAGATION BEHAVIOR OF LicET BEAMS ALONG THE TAPERED LENSLIEE
MepivMm or THE First Kinp

Straight  Section Circularly Bent Section

cosg 6-W(Z)sing, g cosg.§- U@ sing, &
_. S0

i W [{1 +UO)U@)] sing,6 - %2%)[{ 1+liol@} sing 3
o + { U(Z)"Ll(O)} cosgg 5 + [ (W74} _’0'(0)} cosaog]
Coefficient 1 @ 1 §(2)

2 ) ° 3 — -
Az 0 cosgog+u(0)sing°9.-j;"f(°o) sing, Sz sto

Wave Front

cosg§ + U0 sing,§ — Sv;l(o) sing,§

-1

14
52y = ¢ @ [8(0) {cosg09+u(0) sing°9}+

Trajectory of

the Beam Center

520) ) ] ’S"(Z) - 5’1 [5(0) {cos H(O)smgo }
singg
R [ §0- 5(0)}sm ] + 54D

. 0@ ¥(2) o [N NN]
Stope of 0= -, (28 {5(0){{1+u(0)u(z)} sing,@ 3= -5, /22 {&m[{wu(omm} sing§ +{ Uz - U0 coss,5

B ,
the Beam +{u(Z)—U.(O)} °°5909] +%{U(Z)sing)9-cosg°9}] { X(e) 8‘(0)}(U(Z)smgoe cosgoe}] + §(2)
Trajectory
1 We [* Wwe ~ 1
W(2) = {7[1+u2(0)+|?0) +{1—u2(0)—|%] }cosZgog W) = {2 [|+u(o)+| { - |s(0) cosZgoe
Spot Size + Zu(O)sinZgo(;J+ {U(O)(1 -c052g,6) +2 U(O)sm 290 ] + { U(O)(1 —-cosZg 9)
Kol 2 ¥4 4
. o) o (W e oy W 'r*(Z)
#5n29,0}- sz(OJ]/[WE elgi] esin 237} dnfy } (B “’{52(0)}
Parameters V2) = T@/TO , h@D=6@/60) , 9,=TO , 7o -T2 /70 s hD= 6@/ 60, 5 -TO),
, ~ 1 V@ h(z) ~
) _ 1 V' | K@) _ U@ = ——=—= {~ + , S = v@he ,
Us:d in fhe u@) = 290D {U(z) h(z)] , §@=VDIn2) 2 7@ L 0@ h(Z)} ( ‘
xpressions z §(z Z
= S Ulpdn , We= 1 /%0 B=8w- g'o(’t)d’u W, = /V 3,k0 » 5= goR) 55"19‘,’1)597() ) d
0
Note: The parameters G(2) and g(2) are independent.
As a typical example, let us consider the simplified case 1
that G(z) = constant and g(z) is a function of z. In this §’(2) (az + 1)2 [H { — m} cos gof
case, o (z) of (14) becomes zero and hence (29) is simplified az
to T'(2) = g(2). Such a tapered medium may be termed @
a “prototype of tapered lenslike medium of the first 1+ ~—~—-——}-sin 0]6 0)
prototyp p Tod(az + 1)) SR 0P | o€

kind.”” Let us restrict our attention to this prototype and

investigate the propagation behavior of light beams in asin god

detail, according to the following examples. + {cos g — ————2} & (0)] (34)
1) Linear Taper: We consider the simplest model of 2go(az + 1)

this kind of medium, a linear taper, which is defined by

the functi w()—ﬂ—[l{lﬁ—ﬂi—
e functions z) = (o2 + ) 2 50)
G(z) =1 g(&) = golaz + 1) (32)
4
where a is a constant, and go > 0. + (1 — |—S%W> cos 2g8 + sm 290

The field distribution function U(x,z) for the input
beam of (7) is obtained by substituting into (31) p(2) ~
w,in (I) of Table II for the straight section and 3(z) ~ ., +

a*(1 — cos 2g00)} n {a(l — ¢os 2go0)

in (I) of the same table for the circularly bent section, 4g9s° 2g0

together with the expressions given in Table I. As a wr |2

result, the trajectory of the beam center §(z), its slope =+ sin 2g00} { 5 (0)}] (35)
8’(2), and the spot size of the Gaussian beam w(z) are

expressed for the straight section as and 3(z) and @ (z) for the circularly bent section as

8'(0)

do

8(z) = _ HCOS g —|— sm goo} 5(0) + sin goﬁ] (33)

(az + 1)12
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TABLE II
PARAMETERS FOR DETERMINING THE RESPONSE OF THE
ErecrroMAGNETIC F1ELDS OF THE LigET BEaM GUIDED
Avong THE TAPERED LENsLIKE MEDIUM OF THE FIRST
"Xinp wrte LiNeasr, EXPONENTIAL, AND RAISED-
COSINE TAPERS -
Sh:::;' Straight Section Circularly Bent Section
P azst1’ P(z) Jlaz 1 B- /-7
Y il e xcrsncall bl MV € N CI Y
. " 1 2 2 2
Linear az? ~ 20[(GZ‘ 1/ (az+1)- f/\/ -7
Taper 8| 7 * o __r azs1 *Jazﬂ?- r’ ]
J1-72 11
g, 9(0) g, g/1-7
w | yjsowe |% Wi/ T
?(Z) e - ?,(Z) / ez _ )’7/1 -
qe™ W 2az 202 _ p2}¥?
m) w2)| € i) aetw / [2g ferr - ¥
Exponent- o &% 1 5 %[[ elaz 77/1 = R |
iat Taper ,\/_1_7’7 {Cosec",‘;— _ Cosec’ L ”
g | 90 g - W
w | 1//50%0 | % w/ TV
1sacosbz |oz (1+ acosbzf-(1+ af r?
@ o @9 /T (harach
m a(1+a)bsinbz | (tsa)b(1l bz)sinb
N - +Qa ~ _Q{t+a + A COSDZ)SINDZ
Raised- |42} | 0 t1,acosba? | “® | "2 [(1 + acosbef(l »aFriJ7?
Cosine
Taper ! [(2+—smbz) (1+a)
a gj = | =77 b
6 z+Fsmbz 2] _(1:a)5? g 1= sinbz V1-dsinbz )]
1+a 2601-a 1+a cos bz
where 0<|a|<1, (‘I«a))/(hqcosbz)lz«l
90 g g /1-7
.| /e | w/ =

Note: 1t is assumed that 2 |u(z)] < 1 and 2 |u(z)| < 1.

5(2) =

W(z) =

(ot T -
+ {%(%7) (“ )~ 5i8)
3w+
+ SR T @)
e 1 7 2):]41/4 Bl | sqf& [
(1 e 2
(1 — cos 2,(706)} {a(l _ cos 2448)
e =) [T g =
ST S

where -
=V2/(goR). (38)

_If the input wavefront coefficient 1/8%(0) is equal to
1/w?, the spot size in the straight seetion becomes,
from (35),

We

w(z) = {1 + ——sm 2g40

az 1/2
+ o (1 — cos 2g0¢9)} . (39
0

It is seen from (39) that for the case where the medium is
not tapered (a = 0) the spot size keeps a constant value
for the input beam with S(0) = w,, while for the case of
the tapered medium (a £ 0) it fluctuates due to the
terms sin 2gof and cos 2gf. In order to eliminate the
fluctuation, it is sufficient to choose the input wavefront
coefficient as

1 1 a
—— = . 40
§2(0)  w? J 200w (40)

In this case we have the spot size as
w(z) = w,/{az + 1)12 (41)

which does not fluctuate anymore, decreasing (for ¢ > 0)
or increasing (for ¢ < 0) monotonically.
Similarly, if we choose the input wavefront coefficient as

1 Q=
F(0) ~

ca(l — 312
200w’

(42)

W2

we get the corresponding spot size for the circularly bent
section as

W(z) = we/[(az + 1)* — y*JU4

Fig. 2(a) illustrates the calculated spot size in the
straight section w(z) normalized by the input value w(0)
as a function of the normalized distance z/a~'. The param-
eter a/2gy and the input wavefront coefficient 1/82(0) are
taken as a/2g, = 0.05 and 1/8%2(0) = 1/4w?, 1/w2 and
4/w?. Fig. 2(b) shows the calculated trajectory of the
beam center in the straight section normalized by the
input value §(0), as a function of z/a™', for the param-
eters a/2g, = 0.05 and 6°(0) = 0. It can be seen from
these figures that the light beam propagates with fluctu-
ations in both the spot size and the beam trajectory, de-
creasing the amplitudes and periods of the undulations.
It can also be seen that if the input displacement of the
beam center and its slope are zero (i.e., 6(0) = §'(0) = 0)
and the input wavefront coefficient 1/82(0) is glven by
(40), the fluctuations are completely removed.

Fig. 3 illustrates the calculated trajectory of the beam
center in the circularly bent section. In this figure the
parameters are chosen to be a/2F = 0.05, §R-6(0) =
0.6, and #Rs'(0) = 0.12. The beam trajectory in the
circular bend undulates with decreasing amplitude and
period, and asymptotically approaches the center axis of

(43)
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the medium (7 = R). Particularly, if we choose the input
displacement of the beam center and its slope to be
2a

g’R

8(0) = 3(0) = — (44)

g’k

83

then the beam trajectory becomes

1 — 42
git{(az + 1) — y}R~

In this case the beam trajectory no longer undulates..
Moreover, if the input wavefront coefficient is selected
as that given by (42), the spot size does not fluctuate
either.

2) Ezxzponential Taper: Let us investigate the behavior
of light beams along an exponential taper in which the
functions defining the shape of taper are given by

G(z) =1 g(2) = goexp [az]

where a is a constant, and g > 0.

The field distribution function U(z,2) for the input
beam given by (7) can be obtained by substituting into
(31) p(2) ~ w. in (II) of Table II for the straight section
and p(2) ~ @, in (II) of that table for the circularly bent
section. Further, the trajectory of the beam center and
the spot size can be derived by substituling p(z) ~ w,
or5(z) ~ w.in (IL) of the same table into the correspond-
ing expressions given in Table I.

From the results we see that the light beam propagates
with undulating beam trajectory and fluctuating spot size,
decreasing (a > 0) or increasing (a < 0) the amplitudes
and periods of the undulations or fluctuations. The
undulations or fluctuations can be removed under the
same conditions as in the cdse of the linear taper. If
5(0) = &'{0) = 0 and’ (40) holds, thé beam trajectory
and the spot size in the straight section are expressed as

6(z) =0

3(2) = (45)

(46)

W, exp [ —az/2] (47)

and if (42) and (44) are satisfied, they become in the
circular bend

I

w(z)

1 — 42
) 7 gotexp [202] — VIR
@(2) = we/{exp [2az] — v*}'* (48)
3) Raised-Cosine Taper: Let us consider the case where

G(z) = 1 and the function g(z) is given by a raised-cosine
function in the form

3(z) =

. dJo

g(z) = Tt {1 + a cos bz) (49)
where go, @, and b are constants, and it is dssumed that
0<|a|<1landb>0. :

. The field distribution function U(z,z) for the input
beam of (7) is derived by substituting into (31) p(z) ~ w,
or 3(zj ~ @; in (III) of Table II for the straight or cir-
cularly bent sections, correspondingly. It can be seen
from these results that the beam trajectory and the spot
size undulate in the raised-cosined tapered medium as
well. The input conditions to remove the undulations of
the light beam are given for the straight section as

1 1 »
09 = —= (50)

8(0) =6'(0) =0

w2
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and for the circularly bent section as
8(0) = 1/§2R &'(0) =0
1/82(0) = (1 — y2)Y2/w2.

The beam trajectory and the spot size corresponding to
the input conditions of (50) and (51) are, for the straight
section,

(561)

§(z) =0
w(z) = w.(1 4+ a)2/(1 + a cos bz) V2 (52)
and for the circularly bent section
5(2) = (1 4+ a)2/{§2R(1 + a cos bz)?}
w,/[(i + acos bz2)?/(1 + a)? — y2 M4 (53)

It must be noted that the input wavefront coefficients
to eliminate the fluctuation of spot size are complex values
as given by (40) and (42) for the linear and exponential
tapers, whereas for the raised-cosine taper they are real
values as given by (50) and (51).

it

w(2)

B. Tapered Lenslike Medium of the Second Kind

Next we consider the case that G(z) and g(z) are
related by ’

gz('z) —d'(2) —a%(z) =T (= constaﬁt). (54)

In this case, (13) can be solved exactly and has the
oscillatory, nonoscillatory, and eritically damped solu-
tions corresponding to I'? > 0, I? < 0, and I? = 0. As a
result, the wavefront coefficient 1/8%(2), the trajectory
of the beam center §(2)" and its slope §'(2), and the spot
size of the Gaussian beam w(z) are calculated for the
straight section, as shown in Table III.

The functions G(2) and g(z), which satisfy the relation
of (54), cannot be determined uniquely. As an example,
let us consider the simplest case where g(z) = ¢ (= a posi-
tive constant) and G(z) = exp [2az] (a = a positive
constant). Then we have for the straight section

T2 =g — o2

(55)

Thus, in this case, we obtain oscillatory, nonoscillatory,
and critically damped responses of the light beam, res-
pectively, according to ¢* > o?, g% < o, and ¢* = o2
Figs. 4 and 5 show the calculated trajectories of the beam
center 6(z) and their slopes ¢’ () normalized by the input
value 6(0), and the calculated spot sizes w(2) normalized
by the input spot size w(0), as a function of the rormalized
distance 2/T'y~ . The material constant «/g and the input
conditions of the light beam §(0), 6'(0), and w(0) used
for the numerical calculations are given in these figures.
From Figs. 4 and 5, it is seen that for the case of ¢ > «
the light beam exhibits oscillatory responses; and the uri-
dulating beam trajectory and its slope, as well as the spot
size, decrease in amplitude with increasing the propaga-
tion distance z. On the other hand, for the case of ¢ < «
the oscillatory responses disappear and the light beam
shows uniformly focusing response in the propagation
direction. Especially for the ecritical case of ¢ = «, the

most remarkable focusing effect is obtained, i.e., the light
beam is focused onto the transmission axis with the shortest
distance from z = 0.

We can explain the preceding three kinds of response of
the light beam qualitatively as follows.

For convenience, let us define two domains D, and D,,
as showrn in Table IV, according-to the differences of the
permittivity distribution in the z and z directions. That
is to say, D, is the domain in which the distribution of the
permittivity is such that the rate of decrease in the z
direction is greater than the rate of increase in the z direc-
tion, while domain D, is such that the rate of increase in
the 2 direction is greater than the rate of decrease in the
z direction. In Table IV, P(zp,2p) and Q{xq,20) are any
two given points in the respective domains, and ¢(P) and
€(Q) represent the permittivities of the points P and Q,
respectively. Further, v(P) and »(Q) denote the propaga-
tion velocities of the light wave at the respective points.

First, let us consider the oscillatory case of ¢ > « (the
general case where I'? > 0). In this case we can consider
that the previously defined domains D, and D, have such
a distributien as shown in Fig. 6(a), i.e., the domain D,
occupies a great part of the medium and the domain D,
is limitéd to the 2z axis and its vicinity. In the domain D,
the permittivity is large near the z axis, and hence the
propagation velocity of the light beam will be faster away
from the z axis. As a result, the light beam as a whole will
be bent along the path ¢1— ¢y — C; — - -+, as shown in
Fig. 7(a), and thus propagate in undulating fashion. When
the light beam passes through the domain D,, in which
the permittivity takes greater values for large values of z,
the propagation velocity of the light beam will become
slower in the side away from the z axis. Consequently, the
light beam will be pulled toward the z axis as it crosses the
z axis in the upper or lower right-hand direction. Thus the
undulating trajectory of the light beam will decrease in
amplitude with increase of propagation distance.

Next we consider the nonoscillatory and the critical
cases where g < « (the general cases I? < 0). For these
cases the distribution of the domains D, and D, is illus-
trated asin Fig., 6(b). Thus in the domain D, the propaga-
tion velocity of the light beam will be faster in the side
away from the z axis and will be slower in the side near
the axis. As a result, the light beam as a-whole will be bent
along the path €y — C, — C; — - - - and enter the domain
D, as shown in Fig. 7(b). Then, as stated before, in the
domain D, the propagation velocity of the light beam is
slower in the side away from the z axis, the light beam as
a whole will be bent along the path Cy — C; — Cs— - - -,
and asymptoticdlly approach the z axis without undula-
tion. In this case the speed of asymptotic approach of the
light beam to the z axis depends on the values of the per-
mittivities e¢(P;) and e(Q.). Therefore with a certain
permittivity distribution the trajectory of the light beam
will approach the z axis most rapidly, i.e., the optimum
focusing effect will be obtained. Accordingly, the critical
case of g = a (the general case of T2 = 0) can be con-
sidered to represent such an optimum response.

In the preceding we have explained qualitatively only



SAWA: GUIDED LIGHT BEAMS

85

TABLE III

PrivMary ParaMETERS GOVERNING THE PROPAGATION BEHAVIOR OoF LicaT BeaMs ALoNG THE TAPERED LENSLIKE
MgepIuM oF THE SECOND KIND

1 h@ oS b@ sinpz- ,5‘0’[{1+u(o)u,(2)}srnpz+{ @- Ux(O)]cosFZ]

() S0y

(1) Oscitiatory

Case

>0

COSPZ + U(0) smPZ =i

S(O) sinFZ

5 = 5‘(42)[5(0){ ) SinPZ} ©) sin’BZ]

81’(2) =- i;%(Z) {S(O)P[{ 1 +U1(0)Ll1(Z)} sian + {U.1(Z) - Lh(O)} cosPZ]
A + 80 { @ sinpz —cospz]
W(2) = {—[1+u,(o)+ ]+ {1-do - | }coszpz + zu,(o)s.nzpz]

+{u o1~ coszpz) + sin z/;z] . gm{ W m// [hW(Z)' Re[ 52(0)}]‘4

(I Non-Oscillatory]

where
, _ 6@ h(z)
B/ - -2 , =2 [pros0, h@= T, wD = IBh D
: W@ Oz - UDsinhFZ+] 3= S0) [{1-uz(o)u,a)}sinhfz-{Luz)-u,(o)}cosh?z]
si2 . sa

cosh¥z +U(O)smhrz Wi hTz
2 j 0 sinhT:

) 14 — = -
&2 =" [ 50 ( cosh¥Z + u,(O)smhrz} + %‘3)_ sinh¥Z J

- ! a )
Case 52 = 2 [S(O)T [{1— Uz(O)uz(Z)} sinhyz -{ Uz(Z)—Uz(O)} coshl'Z]
r,2< 0 - 6’(0){ uz(Z) sinh¥Z— cosh.fz} |
1 — _
s sh i
Wy (2) {2 [ o - Yo l+{ 1+ o +|gg] ) 232 + ]24U2(0):(1Zn) h2 rzw2 )
+(uz(0)(coshzrz—1)+smh2rz} ym{_z(zdy}]/[_wz_%{g_z(z_o)_ﬂ
where : . h’(z)
_" G 2 Y 2 = 1 T = ——— . =
r=V 02+ -g@ , w,= V/Taea , h) Sor s L@= Ty
1 h(2) -W(2) g0z ‘JSWZ(Q{ Us0)Us(2) g(0)Z +Uy(2) ‘U-a(O)}
siz) SO ‘ 1 +U;(0)g(0)Zz ~ J_z(qz_)g o)z
= h §o)
(D critical 5= h @ [8(0) +{wos0+ &) g0z
Case 5 7 -14 510) 8’(0)
o 5@ = - a0h ) w2 | uoso +g(o)]g(o)z + 50{w@- o} - £2

where

9= N2+ ,

W3(2Z) = [1 + 2U4(0) 9(0)Z + { Lg(o)-rl 50 }942(0)22 + 2g(0)z {1+u3(0)g(0)z}
AL h(2) w} ]‘/2
9"‘{s’(o)U /[WZ Re{sz(O)} |

W= /,/ kO)S(01G(0), h(2) =

h'(z)
29(0)h(Z)

6(2)

50 , W(Z)=

Note: The parameters G(z) and g(z) have a fixed relation as ¢2(z) — o’(2) — o2(2) = I'* = constant.

the variation of the trajectory of the beam center. Similar
qualitative explanation is possible for the variation of the
spot sizes as shown in Fig. 5.

C. Comparison of the Two Kinds of Tapered Lenslike
Media

From (33)—(35) obtained for the linearly tapered lens-
like medium, we see that for the positive values of the
taper constant (¢ > 0) the undulating amplitude of the
spot size w(z) and the trajectory of the beam center 4(2)

decrease with increasing the transmission distance 2, while
the slope of the beam trajectory &’(z) increases. Although
these results are obtained for the restricted case in which
the permittivity profile is given by e(2,2) = €(0){1 — .
go*(az + 1)%?}, examination of the expressions for w(z),
8(2), and 6’(2) given in Table I shows that similar results
will be obtained for more general cases in which only the
focusing parameter g(z) has a gradient in the axial direc-
tion. That is to say, in the prototype of the first kind of
tapered lenslike medium, the undulation of the slope of
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Fig. 4. Calculated trajectories and slopes of beam center of the

light beam guided along the second kind of tapered lenslike medium
‘whose permittivity is given by e (z,2) = ¢ (0) exp [2a2] (1 — g22?).
Iy represents 8, ¥, and g in accordance with o? < ¢?, o > ¢?, and
a? = g% respectively (8(0) 5 0, 8°(0) = 0). (a) Beam trajectories.
(b) Sl())pe of beam trajectories. (It is assumed that o« > 0 and
g>0 ’

the beam trajectory &’(z) increases in amplitude if the
functional form of the taper for the focusing parameter
g(2) is selected such that the undulations of the beam
trajectory 8(z) and the spot size w(z) decrease in am-
plitude.

On the other hand, in the second kind of tapered lens-
like medium, we see from the expressions given in (I) of
Table III that the undulating amplitudes of &' (2), as
well as 6(z) and w(z), can be reduced regardless of the
incidence conditions if the functional forms of the tapers
for the permittivity profile and focusihg parameter, G(z)
and g(z), are selected such that they satisfy the relation
of (54) and G(2) is an increasing function of z.

Further, the second kind of tapered lenslike medium
possesses the following other interesting properties which
are not found in the prototype of the first kind of tapered
lenslike medium. The light beam exhibits three types
of responses—oscillatory, nonoscillatory, and critically
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Fig. 5. Calculated spot sizes of the light beam guided along the

second kind of tapered lenslike medium whose permittivity is
given by e(z,2) = €(0) exp [2 @ 2] (1 — g22?). (a) Oscillatory case
(a? < g%). (b) Nonoscillatory case (a2 >.g%). (¢) Critically damped
case (o = g%). (It is assumed that e > O and g > 0.)
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TABLE IV

Two Domains D, anp D, CLAssIFIED BY THE DIFFERENCE
oF PerMITTIVITY DISTRIBUTION IN THE Z AND 2 DIRECTIONS

i f
Coordinates o Permittivities| Propagation

Points P and @
Domain at Points P] Velocity at
COORDINATE | COORDINATE X
- and Q@ Points P,Q
X r4 Dx
X6l <|X [arbitrary | &(P) > () [lvee) < |vea)] ‘ - ——
o O S
IXel=[Xdl | o< Za | g(P) < €(@) ||v(P) 2Ivia)] D,
arbitrary| Ze> 7o | g(P) > £@) [Pl < V@) ®
Dz ’
. Fig. 6. Illustrative diagram (I) for explaining qualitatively (a)
[%] <Xd | 2p = Za | €P) = £@) h/(P)| < V@) oscillatory and (b) nonoscillatory and eritically damped responses

of the light beam.

\
144} D

\ Z vigy ©
AN NN S 2 NS VS G, i
0 s_\\\\xx_\s_\\n_\:_@f“)gﬂ;}x\&&x\\:v\ﬁg[ﬁ‘if_ %

"

. 7’
\~.ﬁ -
(N
D v@asts, - ’
X \\\\~ _- rd
Q! vian

(a)
) ( vi<lvay, &) >£(0) ) x
V(G , A
-7 ~<0 !
- 2| ¢ A{("N]
ver o~ By pC ’\"\
i //” V(g)\\ DS V(R '
) P vig) N
< Bve e N |
‘ / DX A "V(o,)‘ < Y ~
N _R
TN b
S At ey ' DS
| z
(b) ’

Fig. 7. Tllustrative diagram (II) for explaining qualitatively oscillatory, nonoscillatory, and critically damped re-
?pon>ses of tlga light beam. (a) Oscillatory case (o2 < g2: I* > 0). (b) Nonoscillatory and ecritically damped cases
a? > g2: T2 < 0). .

damped responses—according to the differences of the 2
axial gradient given to the focusing parameter and the G(z) = Ko exp [2 / a(2) dz] (56)
on-axis permittivity. Especially if we select g(2) and G(z) 0
as with
G'(z) >0 (57)

g(2) = [o2(2) + o' (&) ]2 by setting the arbitrary constant I of (54) as zero, we
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can completely remove the undulations of the light beam
“and obtain the optimum focusing effect. In the foregoing
expression (56), o(2) is an arbitrary continuous function
of z and K, is a constant independent of z.

IV. MATCHED WAVEFRONT COEFFICIENTS

In the preceding section the input wavefront coefficients
to eliminate the fluctuations of spot sizes in the straight
and circularly bent sections have been derived for both
the linear and ‘exponential tapers as (40) and (42), and
for the raised-cosine taper as (50) and (51). Generally,
the corresponding input wavefront coefficients for the
first kind of tapered lenslike media can also be derived
from the expressions for 1/82(z) and 1/8%(2) given in
Table 1. The results are expressed as

1 1 .
F0) " wz {1 —ju(0)} (58)
1 1 .
SZ—(O)‘=,E):;{1—JM(0)}- (59)

For the input wavefront coefficients of (58) and (59),
the spot sizes w(z),®(z) and the wavefront coefficients
1/82(2),1/8%(z) are simplified from the expressions in
Table I, respectively, to ’

w(z) = wc/[P(z) e (60)
1 e(®) .,
@ " we {1 —ju(2)} (61)
and
w(2) = w./[B(2) ] (62)
1 B .
T - oz {1 —ga(2)}. (63)

From (60)—-(63) we see that the fluctuation terms cos gof
and sin g (cos §B and sin ) disappear, and hence the
fluctuations of the spot sizes in the tapered media are
completely eliminated. In this sense we call (58) and (59)
the matched input wavefront coefficients, and also (61)
and (63) the matched wavefront coefficients for the first
kind of tapered lenslike media. Similarly,.for the second

kind of tapered lenslike media in the oscillatory case :

(T% > 0), the matched input wavefront coefficient, the
matched wavefront coefficient, and the corresponding spot
size are obtained from (58), (60), and (61) by replacing

., u(0), u(z2), and p(2) with wi, u1(0), ua(2), and h(z) of

(I) in Table III for the straight section and with 1, #:(0),
%1(2), and h(z) for the circularly bent section, in Wthh
@ and #;(2) are given in the following:

o = 1/[BE(0)G(0) T
0 \
i(z) = 2572.(2) (64)
with
B =[§(2) — o'(2) — o*(2) 2. (65)

Application of (61) and (63) to the cases of the linear,
exponential, and raised-cosine tapers yields the matched
wavefront coefficients ag shown in Table V. Fig. 8(a)
and (b) shows numerical illustrations of the matched
wavefront coefficients in the straight sections for the
various tapered lenslike media of the first kind. From the
figure we can easily find the matched wavefront coef-
ficients at the enfrance (z = 0) and exit (¢ = I) planes
of the tapered lenslike medium. Especially, we should note
that the imaginary part of the matched wavefront co-
efficient for the exponential taper is constant regardless of
the length of the tapered medium I; the shape of phase

TABLE V
MatcHED WAVEFRONT COEFFICIENTS IN THE STRAIGHT AND
CircuLARLY BENT SECTIONS OF THE TAPERED LENSLIKE
Meprum oF THE First Kinp with Linear, EXPONENTIAL,
AND RaisED-CosiNg TAPERS

Shape of'Taper Straight Section Circularly Bent Section
A azsl . a Yaz. a7 a(az+1)
Linear Taper ) ] 2 2 -l
w 2gwi(az+ 1) w 2qwt(az+17- 1Y)
Exponential 9z |_a y e202_y? - a ez
raper w7 "z 2qwe (&L 1)
Raised- 1+acosbz | {1+acosbzf-[(1+@)F
Cosi wi(1+a) . wi(1+a) '
osine . ab sinbz . ab(1+acosbz) sinbz
Taper 2g w?( 1+ acosbz) 29 w2((1+acosbzf-(1+a¥ ¥Y

I 3g-mmm—-TRIRY. 1005 f’—a‘
N L) =
—— N Jn
= N\, exponential & '-\
xn A\ taper & E?
ETE N 1004 5.
<L 2 ‘p/;\ \ o
a 9,.\\ (e g'——’-\
é = (as 01’)\ linear 3\
.&n g " N taper 003§:§‘
_0..4 \\ = ,§
14 ~ D
1 + 4.1 0,025
5 10
NORMALIZED LENGTH
OF TAPER 2 —
(a)
-4 < 03
N T I’ \\ 1 r?
[ \
—_— ! \ ¥
§ [ \\ '_wn————l
_ X0 37 f(a=-08) 2k E
\ ot i \ 2 <
e [ ! \3 a
a ! \®
K Y AN A T I -
< —= 2l < & Ly S0
w = [} L 1z o
x Km } raised- % = E
- ! cosine \ 3 =
7 taper \\ : ¢5ﬂ n
1 ‘ !
(o] 05 1.0'0

NORMALIZED LENGTH
OF TAPER TZ/p —=

(b)

Fig. 8. Numerical illustrations of the matched wavefront coeffi-
cients in the straight section of the first kind of tapered lenslike
medium (a) for linear and exponential tapers and (b) for raised-
cosine taper.
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front is conserved against variations of [. Conversely, if
we determine the shape of taper in which the imaginary
part of thie matched wavefront coefficient Im {1/82(z)} =
— 0 (2) /2gow2p(2) is independent of z, we find that it is
nothing but the exponential taper. Thus we see that the
exponential taper possesses an interesting property of con-
serving the shape of phase front of the light beam with the

matched input wavefront coefficient against variations of

the length of the tapered medium.

V. APPLICATIONS OF TAPERED
LENSLIKE MEDIA

A. Spot-Size Transducer

Suppose that two straight lenslike media with different
focusing parameters must be connected. If the two media
are connected directly, mode conversion and reconversion
occur since the normal modes of the media are different,
and, as a result, the spot size of the light beam with input
conditions matched to the entrance medium fluctuates in
the outgoing medium. If the fluctuation grows remarkably,
the diffraction loss due to the finite aperture of the
medium increases and also signal distortion arises, dete-
riorating communication quality. In order to avoid such
unfavorable phenomena, we need a matching mechanism
between the two media. Certain matching can be done by
using the natural focusing properties of multimode sections
such as a combination of two or more lenses. In such a
mechanism, however, reflection loss due to the abrupt
change of the permittivity at the boundaries of the
matching lenses would be inevitable, and slight displace-
ment or misadjustment of the lenses would cause ap-
preciable mismatching so that efficient and stable coupling
could not always be obtained. In this section we propose
a niew matching mechanism as shown in Fig. 9, a spot-size
transducer composed of a tapered lenslike medium of the
first kind, which permits stable and efficient coupling
of the two media, and we derive the design conditions for
highly efficient coupling.

In order to avoid the fluctuation of the spot size arising
from mode conversion and reconversion, we must make
both the wavefront coefficients 1/8%(0) at z = 0 and
1/82(1) at z =1 equal to the characteristic wavefront
coefficients 1/wa? and 1/we? of the media I and II, res-
pectively. That is, we need the following relations:

1/8%(0) = 1/we?

£,(x)=g0)[1- &x7)

£(x,z)=£(0) [1 - gz(z)le
g1)=E)(1- g2x?)

«—medium spot size medium -
1 transducer i}
' l

Fig. 9. Spot-size transducer utilizing the first kind of tapered
lenslike medium. )

89

1/8°(1) = 1/we (66)
Let the permittivity of the media I and II be expressed

as
a(z) = €(0) (1 — gia?)
e(z) = e(0) (1 — g2a?). (67)
Then we have
1/we? = gik(0)
1/wat = gak(0). (68)

Noticing that both 1/wx? and 1/w.? are real values, let
us apply the relations of (66) to (61), and we get

w(0) =u() =0
S2(0) = wy? = p(D)wed

(69)
(70)

Among the three types of tapered lenslike media inves-
tigated in the preceding section, it is only the raised-cosine
taper that can satisfy (69) with a finite length of taper I.
Set the constant b of (49) as b = =/I; then (69) is satis-
fied. Therefore, the following design considerations of the
spot-size transducer are limited to the case of using the
raised-cosine taper. ‘

The wavefront coefficient of the light beam satisfying
the input conditions of (50) is given from Table V as

1 _ 1 + a cos bz ab sin bz
82(z) w1+ a) Y 2gaw2(1 + a cos bz) |

Substituting (66) and (68) into (71) and setting b =
=/l, we can determine a and g, as

a= (g1 — 92)\/(91 + g2) B (72)
go = G1. (73)

Substitution of (66), (72), and (73) in (71) yields the
spot size in the transducer as

2 P) ~1/2
w(z) = wa [l {1 + <wd> + (1 _ Y > cos T—ZH .
2 Weo wc22 l

(74)

(71)

Moreover, the transfer ratio of the spot size w./wa is
calculated from (70) by setting b = =/l and z = [ of p(2)
of (IIT) in Table II as

We/wa = {{1 4+ a)/(1 — a) }12,

Fig. 10(a) illustrates the relationship between we/wa
and a given by (75). From this figure we can readily find
the approximate value of we/w. as a function of the
parameter a involved in (49); for example, if we set
a = 0.6, we have w./w, = 0.5, and hence for this case
the light beam at the exit of the transducer z = [ has the
spot size reduced by half of the input value. Fig. 10(b)
displays the normalized spot sizes in the transducer of
(74) for the transfer ratios we/wa = 0.8, 0.5, and 0.2, as
a function of the normalized distance z/1.

(75)
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(a) Transfer ratio of spot size and (b) its véariations in a

spot-size transducer, utilizing the first kind of tdpered lenslike
- medium with a raised-cosine taper.

B. Mode Tranisducer for Use in a Circular Bend

Let us suppose that the straight section of an optical
fiber consisting of a lenslike medium must be connected
to the circularly bent section of that fiber without offsetting
and tilting the center axis of the medium. If we connect
the two sections directly, the light beéam propagating
along the circular bend is accompanied with the indula-
tions of the beam trajectory and the fluctuations of the
spot size because of the difference of normal modes in
each section. These undulations and fluctuations are also
unfavorable from the transmission system point of view.
Siich unfavorable phenomena, however, can be suppressed
by inserting 2 mode transducer between the straight and
cy:cularly bent sections, as showr in Fig. 11. The portion
OA in the figure represents the mode tra,nsdueer, which is
effective in converting normal modes of the straight sec-
tion into those of the circularly bent section.

Let the curved lenslike medium with a raised-cosine
taper be inserted in the portion OA as the mode transducer.
The trajectory of the light beam incident on the circular
bend OA along its axis cin be obtained by substituting
$(2) ~ o of (III) in Table II into the expression for

3(2) given in Table I and setting 6§(0) = §'(0) = 0 ds
3(2) = —{J(2) cos gl — J4(2)}/(§?R)  (76)
with
2 Y [/1+ acos bz)2 2 ]‘1/4
J(2) = (1 — g02R2> [( T a - o .

(77)

The parameters § and 6 are given in (IID of Table II.
If we take the length of the tapered medium [ as

L= w/b=n/fo=/{g[1 — 2/(gB)* T2} (78)
we get from (76) ‘
W) = WO +ID Y @GR (79)
() = gS(Z) =0. (80)
dz

=0

straight section
£.)=€0)(1 - gi )

mode transducer

r,2-ER)[1 - f2)(r -RY)

_cireularly
bent section

FAGECHIE
q(r-R¥]
OA-1
€)=ERI=ER)
Ir-RI<R , [r-R|<«R,

°2
Mode transducer for use in a cireularly bent section of an

Fig. 11.
optical waveguide consisting of lenslike medium.

‘Accordingly, the condition to eliminate the undulation

from the trajectory of the beam center is given as
1/G2R = (J () + J*(1)}/ GR) (81)

with
G = 9u[1 — 2/(g.R)" " (82)

where the permit‘t’i\vity profiles are assuined to be for the
straight section SO '

e(2) = €(0) (1 — g,2?) (83)
“and for the circularly bent section AB
e(r) = &(RH[1 — g2(r — R,)*]. (84)

The matching conditions for the characteristic spot
sizes at the entrance and exit of the mode transducer are
derived from (53) and (78) as follows:

wefl — 2/(goR)?} = s (= 1/[gb(0) T2)
J(L=aY 2 | wo (= 1/Td 1/2
We {(1 + a) - go2R2} = Do (= 1/[§k(0) ). (86)

From (78), (81), (85); and (86), we can determme the
parameters go, @, b, and R, which are involved in the ex-

(85)

- pression for the permittivity profile of the mode trans-

ducer
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e(rz) = eé(R){1 — go*(1 4+ acos bz2)?(r — R)2/(1 + a)?}.
(87)

If we assume €.(R,) = ¢,(0) and g, = g, we obtain the
following results:

R = R{1+ (1 —2/g2R.2)%"4}

1/2
2R2>
2 / [1 + (1 _ 2
gk’ g'R 2
2 1/2
b= 1-— .
Go < g0’ Rz)

* The results of (88) represent the design conditions for the
mode transducer consisting of a raised-cosine tapered
medium.

go=gs<1-|-

a =

)1

(88)

C. Ray-Oscillation Suppressor

As described in the preceding section, the second kind
of tapered lenslike medium possesses an interesting prop-
erty: the undulating amplitudes of the slope of the beam
trajectory ¢’(2), as well as the beam trajectory §(z) and
the spot size w(z), can be reduced if the funectional forms
of the tapers G/(z) and ¢(z) are chosen such that (54) is
satisfied and G'(2) is an increasing function of z.

This property of the second kind of tapered l_enslike
medium makes it possible to construct an ROS with only
a passive medium. According to [12], however, the realiza-
tion of an ROS with only a passive medium is limited to
the case of transmitting a light beam from a region of low
to one of high perm1tt1v1ty, which is proved by Liouville’s
theorem. Accordingly, if we insert such an ROS in the
connecting terminals of two light-focusing fibers consisting
of lenslike media with different permittivity on the center
axis, we can suppress the undulation of the light beam
propagating from the ﬁber of low to one of high per-
mittivity.

Further, if such an ROS is installed in the photo-
receiving terminal plane of a photodetector such as an
avalanche photodiode or a photomultiplier, it acts as a
component not only to enlarge the light-receiving area but
also to increase the light-acceptance angle.

VI. CONCLUSION

In the present paper we have derived general expressions
- for the response of the electromagnetic fields in the
tapered lenslike medium on the basis of the approximate
wave theory, which were not obtained in the previous
papers based on the ray theory. Applying the results to
the various tapers, we have investigated the propagatlon
behavior of light beams in detail, theoretically and
numerically. As a result, we have clarified that tapered
lenslike media can be classified into the first and second
kinds, according to the differences of the focusing prop-
erty. We have also clarified the matching incidence con-
ditions to eliminate the fluctuations of the light beam,
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which have not yet been obtained in the previous papers.

As an application of the theory, a spot-size transducer
and a mode transducer for use in a circular bend have
been proposed, which are composed of the first kind of
tapered lenslike medium with a raised-cosine taper, and
the ‘desigh conditions for both transducers have been
derived. Further, an ROS using the second kind of tapered
lenslike medium has been proposed, and its applicability to
some new optical circuit components has been discussed.

We have verified that the basic equations for the beam
trajectory, the spot size, and the curvature of the phase
front obtained in the present paper coincide with those
derived from the viewpoint of ray theory, apart from slight .
differences due to the assumptions -introduced for sim-
plification. For the sake of simplicity, we have assumed
that the permittivity profile in the transverse cross section
is proportional to the square of the distance from the
center axis, and also that the material of the medium has
no loss and no gain. Furthermore, we have used the TEM
wave approximation as well as the paraxial beam approxi-
mation. Accordingly, we cannot apply the results of this-
paper to cases where these approxnnatlons are not appli-
cable or satisfied.

APPENDIX .
SOLUTION OF THE PARAXIAL
WAVE EQUATION (5)

In order to clarify the behavior of the light beam with
Hermite-Gaussian transverse field distribution, let us
express the field distribution function as [771-[9]

U(z,2) = exp [4(2)2* + B(2)z + C(2)]
‘He,[D(2)x + F(2)] (Al)

where A(z), B(z), C(z), D(z), and F(z) are unknown
parameters which are assumed to be functions of 2z, and

He, (x) denotes the Hermite polynomial of the nth order,
defined as

tr/2) ( 1)m(2X) n—2m

H n =n! : A
en(x) = n! ,EO ‘mli(n — 2m)! (A2)
with ‘
| 5o me 246
n
ol - A
2] (43)
-1
= 2 ’ n =. 1:3;5;"'

Substituting (A1) in (5) in the text and eliminating
the terms He,_s(x) by using the recurrence relation

2(n — 1) He, »(x) = 2x He,1(x) — He,(x) (A4)
we obtain '
{M1(2)2® + Ae(2)z + As(2) | -He[D(2)z + F(2) ]

+ {M(2)z + As(2) } Hepa[D(2)z + F(2) ] = 0 (A5)

where Ai(z) (¢ = 1,2,
cluding A(2), B(z),++-

,5) represents functions of z, in-
,JF(2) and their first derivatives
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with respect to z. To determine the unknown parameters
A(2),B(2),-++,F(2), let us express (A5) as a descending
power series in z with the help of (A2) and compare terms
with equal powers of z. Then we get the following set of
differential equations:

2EE@ LD 2 i) - g K (A6a)
K 8 <Z) — 44(2)B(2) (A6b)
2K ) T2 = o) +24() — 20D(2) ~ K’

(A6e)
&) B = D24 () + Do)} (A6d)
K@ LE 2 DB + FOD@).  (6e)

As a first step, to 1ntegrate (A6a) and (A6b), let us
write

K(z) 1 di(2)
A(z) = — 2 @ o (A7)
"B(2) = —24(2)8(2) — jK(2) = da(z) (A8)

in which £(z) and 6(2) are newly introduced unknown
parameters, being real-valued functions of z.

Substituting (A7) and (A8) in (A6a) and (A6b), we
have

Piz) | K'(2) di() | B
ks R ACLOR LI
da®%(z)  K'(2) dé(z) R _
i KG) da +g (2)8(z) = 0. (A10)
If we express £(2) and §(2) as
£(e) = M(2)/[K(2) ] 8(2) = N(2)/[K(2) "> (All)

and substitute into (A9) and (A10), we find that both the
newly introduced functions M (2) and N (2) must satisfy
the same differential equation as given by (13) in the
text. Let the two mdependent solutions of (13) be )\1(2)
and A\;(z). Then we get from (A11)

(A12)

£(2) = {ai(2) + aha(2) }

_ 1
[K(z) ]

6(2) = {bii(2) + bahe(2) } (A13)

1
[K (=) ]
where a1, as, by, and b, denote integration constants to be
determined from the input conditions of the light beam.
Consequently, we find the functional forms of A(z2)
and B(z) by substituting £(z) and §(z) from (A12) and
(A13) into (A7) and (AS).

Next, to integrate (A6d), substitute (A7) in (A6d),
and we have

dDdiz) [ g(% dsd(zz)] D() = [_ m] D'(z). (Al4)

Equétion (Al4) is a Bernoulli’s differential equation and
can be integrated as :

—1/2
D@—kﬂ@ﬂ%@/mﬁ%J (A15)

where K is an integration constant.

Furthermore, integrating (A6c) and (A6e) and sub-
stituting for A (2), B(2), and D(z) from (A7), (AS8), and
(A15), we obtain

C(2) = A(2)&(2) +]La(z)5'(z> —nln D(z)
—(n+ 3tk —3n K(z) + K (A16)
F(2) = D(2) {Kst(2) — 8(2) } (A17)

where K and K; are also integration constants.

If we consider an input beam with the field distribution
function U (z,0) as given by (7) in the text and determine
the integration constants ai, as, by, by, Ky, K, and K;, we
can uniQuely determine the unknown parameters A4 (z),
B(z),+++,F(2), and hence from (Al) the field distribution
functlon Uz, z) As a result, the primary parameters
governing the propagation behavmr of the light beam, the
wavefront coefficient 1/5%(z), the trajectory of the beam
center §(2), and its slope 4’(z) are obtained as (8), (9),
and (10) in the text, respectively. From the definition of
the wavefront coeflicient, the spot size w(z) and the
curvature of the phase front 1/R(2) of a Gauss1an beam
are calculated as

w(z) = 1/[Re {1/8%(2)} >

1/R(2) = Im {1/8%(2) }/K (2). (AlS)

It is interesting to observe that the differential equa-
tions for w(z) and 1/R(2) as well as the beam trajectory
6(z) conform with those derived from the viewpoint of ray
theory. To derive the equations for w(z) and 1/R(z),
let the unknown parameter A (z) be expressed as

—3{1/w(2) + jK(2)/R(2)}.

By substituting (A19) into (A6a) and equating the real
and imaginary parts, respectively, we have

A(z) = (A19)

K'(z) K(2)R'(2)
K(2) {R(z) TR }
I .
1 1 dw(@)
Ri2ur(z)  w(e) dz (A21)
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From (A21) we get

11 duw(e)
Rz  w(z) de

Substituting (A22) into (A20), we obtain the equation
for the spot size as

dw(z) G (2) dw(z) , 1 _
dz? Ge) 4 TTEvE - mone =0

(A23)

(A22)

Differentiating (A22) yields

%{— R(lz)} - w_<:> Tt {253 } (424)

From (A23) we get

1) G {w’(z)

w(z) de? - G(2) | w(z)

1
KR2(2)wt(z)
(A25)

Substituting (A25) into (A24) with (A22), we have the
equation for the curvature of the phase front as

} —¢(2) +

d%{R_@l)} =00 ~ T T {R_E; }
| el e

The equation for the beam trajectory §(z) is given by
(A10). )

We can easily verify that (A23), (A26), and (A10)
agree with the results by the viewpoint of ray theory.
For example, following Tien et al.’s paper [2], let us sub-
stitute the refractive index corresponding to the permit-
tivity (1) in the text, n(z,2) = neG(2) {1 — (g2(2) /2) 2%}
into the ray equation (3) of [2] and approximate

——= " = 22}y (A27)

1—g(2)a2/2 |
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lon G  g@g@ | ¢k
with the assumption that
g*(2)r?/2 K 1
ICTICI WL
1-¢Gzzl” Nlae| (A29)

Then we obtain (A10), from which (A23) and (A26) are
readily derived, according to [2].
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